Hybrid FSO/RF Communications in Space-Air-Ground Integrated Networks: A Reduced Overhead Link Selection Policy

被引:2
|
作者
Bithas, Petros S. [1 ]
Nistazakis, Hector E. [2 ]
Katsis, Athanassios [3 ]
Yang, Liang [4 ]
机构
[1] Natl & Kapodistrian Univ Athens NKUA, Dept Digital Ind Technol, Psahna 34400, Greece
[2] Natl & Kapodistrian Univ Athens, Dept Phys, Athens 15784, Greece
[3] Univ Peloponnese, Dept Social & Educ Policy, Korinthos 20100, Greece
[4] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China
关键词
composite fading; free space optical communications; hybrid FSO/RF communications; network selection; reduced signaling overhead; space-air-ground integrated networks; OUTAGE PERFORMANCE; TERRESTRIAL; CHALLENGES; ERROR;
D O I
10.3390/electronics13040806
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Space-air-ground integrated network (SAGIN) is considered an enabler for sixth-generation (6G) networks. By integrating terrestrial and non-terrestrial (satellite, aerial) networks, SAGIN seems to be a quite promising solution to provide reliable connectivity everywhere and all the time. Its availability can be further enhanced if hybrid free space optical (FSO)/radio frequency (RF) links are adopted. In this paper, the performance of a hybrid FSO/RF communication system operating in SAGIN has been analytically evaluated. In the considered system, a high-altitude platform station (HAPS) is used to forward the satellite signal to the ground station. Moreover, the FSO channel model assumed takes into account the turbulence, pointing errors, and path losses, while for the RF links, a relatively new composite fading model has been considered. In this context, a new link selection scheme has been proposed that is designed to reduced the signaling overhead required for the switching operations between the RF and FSO links. The analytical framework that has been developed is based on the Markov chain theory. Capitalizing on this framework, the performance of the system has been investigated using the criteria of outage probability and the average number of link estimations. The numerical results presented reveal that the new selection scheme offers a good compromise between performance and complexity.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] SERVICE-ORIENTED SPACE-AIR-GROUND INTEGRATED NETWORKS
    Ren, Ju
    Zhang, Ning
    Gao, Yue
    Wang, Ye
    Ismail, Muhammad
    Kimery, James
    IEEE WIRELESS COMMUNICATIONS, 2020, 27 (06) : 10 - 11
  • [22] A Bistatic Sensing System in Space-Air-Ground Integrated Networks
    Li, Xiangyu
    Shang, Bodong
    Wu, Qingqing
    2024 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA, ICCC, 2024,
  • [23] A Hybrid approach to cluster head selection in space-air-ground integrated networks: leveraging SMC and OOA for optimal performance
    Saeedi, Iman Dakhil Idan
    Al-Qurabat, Ali Kadhum M.
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (04):
  • [24] Space-Air-Ground Integrated Networks: Outage Performance Analysis
    Ye, Jia
    Dang, Shuping
    Shihada, Basem
    Alouini, Mohamed-Slim
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (12) : 7897 - 7912
  • [25] OPTIMIZING SPACE-AIR-GROUND INTEGRATED NETWORKS BY ARTIFICIAL INTELLIGENCE
    Kato, Nei
    Fadlullah, Zubair Md.
    Tang, Fengxiao
    Mao, Bomin
    Tani, Shigenori
    Okamura, Atsushi
    Liu, Jiajia
    IEEE WIRELESS COMMUNICATIONS, 2019, 26 (04) : 140 - 147
  • [26] Preface: Security and privacy for space-air-ground integrated networks
    Jiangzhou Wang
    Yue Gao
    Cheng Huang
    Haojin Zhu
    Security and Safety, 2024, 3 (02) : 4 - 5
  • [27] Secure, Intelligent, Programmable Space-Air-Ground Integrated Networks
    Scott-Hayward, Sandra
    PROCEEDINGS OF THE 2023 WORKSHOP ON RECENT ADVANCES IN RESILIENT AND TRUSTWORTHY ML SYSTEMS IN AUTONOMOUS NETWORKS, ARTMAN 2023, 2023, : 1 - 1
  • [28] Heterogeneous Traffic Offloading in Space-Air-Ground Integrated Networks
    Zhang, Liang
    Abderrahim, Wiem
    Shihada, Basem
    IEEE ACCESS, 2021, 9 : 165462 - 165475
  • [29] Satellite routing in space-air-ground integrated IoT networks
    Liu, Jinlin
    Du, Hang
    Yuan, Xueguang
    Zhang, Yangan
    Michel, Kadoch
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 1534 - 1538
  • [30] Computing over Space-Air-Ground Integrated Networks: Challenges and Opportunities
    Shang, Bodong
    Yi, Yang
    Liu, Lingjia
    IEEE NETWORK, 2021, 35 (04): : 302 - 309