Sparse additive support vector machines in bounded variation space

被引:0
|
作者
Wang, Yue [1 ]
Lian, Heng [1 ,2 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] CityU Shenzhen Res Inst, Shenzhen 518057, Peoples R China
关键词
additive models; empirical norm penalty; high dimensionality; SVM; total variation penalty; REGRESSION; RATES; CONSISTENCY; INFERENCE; MODELS; RISK;
D O I
10.1093/imaiai/iaae003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose the total variation penalized sparse additive support vector machine (TVSAM) for performing classification in the high-dimensional settings, using a mixed $l_{1}$-type functional regularization scheme to induce sparsity and smoothness simultaneously. We establish a representer theorem for TVSAM, which turns the infinite-dimensional problem into a finite-dimensional one, thereby providing computational feasibility. Even for the least squares loss, our result fills a gap in the literature when compared with the existing representer theorem. Theoretically, we derive some risk bounds for TVSAM under both exact sparsity and near sparsity, and with arbitrarily specified internal knots. In this process, we develop an important interpolation inequality for the space of functions of bounded variation, relying on analytic techniques such as mollification and partition of unity. An efficient implementation based on the alternating direction method of multipliers is employed.
引用
收藏
页数:29
相关论文
共 50 条
  • [11] Version Space Support Vector Machines
    Smirnov, E. N.
    Sprinkhuizen-Kuyper, I. G.
    Nalbantov, G. I.
    Vanderlooy, S.
    ECAI 2006, PROCEEDINGS, 2006, 141 : 809 - +
  • [12] Sparse Pinball Twin Bounded Support Vector Clustering
    Tanveer, M.
    Tabish, M.
    Jangir, Jatin
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2022, 9 (06): : 1820 - 1829
  • [13] Twin Bounded Weighted Relaxed Support Vector Machines
    Alamdar, Fatemeh
    Mohammadi, Fatemeh Sheykh
    Amiri, Ali
    IEEE ACCESS, 2019, 7 : 22260 - 22275
  • [14] A novel bounded loss framework for support vector machines
    Li, Feihong
    Yang, Hu
    NEURAL NETWORKS, 2024, 178
  • [15] Efficient sparse nonparallel support vector machines for classification
    Yingjie Tian
    Xuchan Ju
    Zhiquan Qi
    Neural Computing and Applications, 2014, 24 : 1089 - 1099
  • [16] An equivalence between sparse approximation and support vector machines
    Girosi, F
    NEURAL COMPUTATION, 1998, 10 (06) : 1455 - 1480
  • [17] WAVELET KERNEL SUPPORT VECTOR MACHINES FOR SPARSE APPROXIMATION
    Tong Yubing Yang Dongkai Zhang Qishan (Dept of Electronic Information Engineering
    Journal of Electronics(China), 2006, (04) : 539 - 542
  • [18] WAVELET KERNEL SUPPORT VECTOR MACHINES FOR SPARSE APPROXIMATION
    Tong Yubing Yang Dongkai Zhang Qishan Dept of Electronic Information Engineering Beijing University of Aeronautics and astronautics Beijing China
    Journal of Electronics, 2006, (04) : 539 - 542
  • [19] On support vector machines and sparse approximation for random processes
    Capobianco, E
    NEUROCOMPUTING, 2004, 56 : 39 - 60
  • [20] Efficient sparse nonparallel support vector machines for classification
    Tian, Yingjie
    Ju, Xuchan
    Qi, Zhiquan
    NEURAL COMPUTING & APPLICATIONS, 2014, 24 (05): : 1089 - 1099