causal inference;
link prediction;
graph embeddings;
causal representation learning;
geometric deep learning;
IDENTIFICATION;
INFERENCE;
NETWORK;
D O I:
10.1098/rspa.2023.0121
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Existing causal models for link prediction assume an underlying set of inherent node factors-an innate characteristic defined at the node's birth-that governs the causal evolution of links in the graph. In some causal tasks, however, link formation is path-dependent: the outcome of link interventions depends on existing links. Unfortunately, these existing causal methods are not designed for path-dependent link formation, as the cascading functional dependencies between links (arising from path dependence) are either unidentifiable or require an impractical number of control variables. To overcome this, we develop the first causal model capable of dealing with path dependencies in link prediction. In this work, we introduce the concept of causal lifting, an invariance in causal models of independent interest that, on graphs, allows the identification of causal link prediction queries using limited interventional data. Further, we show how structural pairwise embeddings exhibit lower bias and correctly represent the task's causal structure, as opposed to existing node embeddings, e.g. graph neural network node embeddings and matrix factorization. Finally, we validate our theoretical findings on three scenarios for causal link prediction tasks: knowledge base completion, covariance matrix estimation and consumer-product recommendations.
机构:
Univ Manchester, Sch Med Sci, Div Canc Sci, Manchester, England
Univ Manchester, Manchester Canc Res Ctr, Christie NHS Fdn Trust,Sch Med Sci, Div Canc Sci,Fac Biol Med & Hlth,Manchester NIHR B, Wilmslow Rd, Manchester M20 4BX, EnglandUniv Manchester, Sch Med Sci, Div Canc Sci, Manchester, England
Renehan, Andrew G.
Tipping, Owen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Sch Med Sci, Div Canc Sci, Manchester, EnglandUniv Manchester, Sch Med Sci, Div Canc Sci, Manchester, England
Tipping, Owen
Wang, Mengying
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Sch Med Sci, Div Canc Sci, Manchester, EnglandUniv Manchester, Sch Med Sci, Div Canc Sci, Manchester, England
机构:
Harvard Univ, Sch Med, Dept Ambulatory Care & Prevent, Boston, MA 02215 USA
Harvard Pilgrim Hlth Care, Boston, MA 02215 USAHarvard Univ, Sch Med, Dept Ambulatory Care & Prevent, Boston, MA 02215 USA