Variational Disentangle Zero-Shot Learning

被引:0
|
作者
Su, Jie [1 ]
Wan, Jinhao [2 ]
Li, Taotao [2 ]
Li, Xiong [2 ]
Ye, Yuheng [2 ]
机构
[1] Newcastle Univ, Sch Comp, Newcastle Upon Tyne NE4 5TG, England
[2] Zhejiang Univ Technol, ISPNU Lab, Hangzhou 310023, Peoples R China
关键词
zero-shot learning; computer science; pattern recognition; deep learning;
D O I
10.3390/math11163578
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Existing zero-shot learning (ZSL) methods typically focus on mapping from the feature space (e.g., visual space) to class-level attributes, often leading to a non-injective projection. Such a mapping may cause a significant loss of instance-level information. While an ideal projection to instance-level attributes would be desirable, it can also be prohibitively expensive and thus impractical in many scenarios. In this work, we propose a variational disentangle zero-shot learning (VDZSL) framework that addresses this problem by constructing variational instance-specific attributes from a class-specific semantic latent distribution. Specifically, our approach disentangles each instance into class-specific attributes and the corresponding variant features. Unlike transductive ZSL, which assumes that unseen classes' attributions are known beforehand, our VDZSL method does not rely on this strong assumption, making it more applicable in real-world scenarios. Extensive experiments conducted on three popular ZSL benchmark datasets (i.e., AwA2, CUB, and FLO) validate the effectiveness of our approach. In the conventional ZSL setting, our method demonstrates an improvement of 12 similar to 15% relative to the advanced approaches and achieves a classification accuracy of 70% on the AwA2 dataset. Furthermore, under the more challenging generalized ZSL setting, our approach can gain an improvement of 5 similar to 15% compared with the advanced methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Learning semantic ambiguities for zero-shot learning
    Celina Hanouti
    Hervé Le Borgne
    Multimedia Tools and Applications, 2023, 82 : 40745 - 40759
  • [22] Practical Aspects of Zero-Shot Learning
    Saad, Elie
    Paprzycki, Marcin
    Ganzha, Maria
    COMPUTATIONAL SCIENCE, ICCS 2022, PT II, 2022, : 88 - 95
  • [23] Zero-Shot Program Representation Learning
    Cui, Nan
    Jiang, Yuze
    Gu, Xiaodong
    Shen, Beijun
    30TH IEEE/ACM INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION (ICPC 2022), 2022, : 60 - 70
  • [24] Research progress of zero-shot learning
    Sun, Xiaohong
    Gu, Jinan
    Sun, Hongying
    APPLIED INTELLIGENCE, 2021, 51 (06) : 3600 - 3614
  • [25] Research progress of zero-shot learning
    Xiaohong Sun
    Jinan Gu
    Hongying Sun
    Applied Intelligence, 2021, 51 : 3600 - 3614
  • [26] Joint Dictionaries for Zero-Shot Learning
    Kolouri, Soheil
    Rostami, Mohammad
    Owechko, Yuri
    Kim, Kyungnam
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3431 - 3439
  • [27] Variational Autoencoder for Zero-Shot Recognition of Bai Characters
    Lin, Weiwei
    Ma, Tai
    Zhang, Zeqing
    Li, Xiaofan
    Xue, Xingsi
    Wireless Communications and Mobile Computing, 2022, 2022
  • [28] Creativity Inspired Zero-Shot Learning
    Elhoseiny, Mohamed
    Elfeki, Mohamed
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5783 - 5792
  • [29] Synthesized Classifiers for Zero-Shot Learning
    Changpinyo, Soravit
    Chao, Wei-Lun
    Gong, Boqing
    Sha, Fei
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 5327 - 5336
  • [30] Zero-Shot Learning With Transferred Samples
    Guo, Yuchen
    Ding, Guiguang
    Han, Jungong
    Gao, Yue
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (07) : 3277 - 3290