Numerical approximation based on a decoupled dimensionality reduction scheme for Maxwell eigenvalue problem

被引:2
|
作者
Jiang, Jiantao [1 ]
An, Jing [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
decoupled dimensionality reduction scheme; error estimation; Maxwell eigenvalue problem; numerical approximation; spherical domain; SPECTRAL-ELEMENT METHOD; DISCRETE COMPACTNESS; EQUATIONS; COMPUTATION;
D O I
10.1002/mma.9504
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a high-accuracy numerical method based on a decoupled dimensionality reduction scheme for Maxwell eigenvalue problem in spherical domains. Using the orthogonality of vector spherical harmonics and the variable separation approach, we decompose the original problem into two classes of decoupled one-dimensional TE mode and TM mode. For the TE mode, we establish a variational formulation and its discrete scheme and give the error estimations of the approximate eigenvalues and eigenfunctions. For the TM mode, it is different from TE mode which naturally meets the divergence-free condition and will not generate some spurious eigenvalues. We design a numerical algorithm based on a parameterized method to filter out the spurious eigenvalues. Finally, some numerical results are presented to confirm the theoretical results and validate the algorithms.
引用
收藏
页码:17367 / 17387
页数:21
相关论文
共 50 条
  • [21] An adaptive inverse iteration for Maxwell eigenvalue problem based on edge elements
    Chen, Junqing
    Xu, Yifeng
    Zou, Jun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (07) : 2649 - 2658
  • [22] AN EFFICIENT NUMERICAL METHOD BASED ON LEGENDRE-GALERKIN APPROXIMATION FOR THE STEKLOV EIGENVALUE PROBLEM IN SPHERICAL DOMAIN
    Tan, Ting
    An, Jing
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (02): : 587 - 601
  • [23] NUMERICAL APPROXIMATION OF THE ELLIPTIC EIGENVALUE PROBLEM BY STABILIZED NONCONFORMING FINITE ELEMENT METHOD
    Weng, Zhifeng
    Zhai, Shuying
    Zeng, Yuping
    Yue, Xiaoqiang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1161 - 1176
  • [24] THE TRAVELING SALESMAN PROBLEM: LOW-DIMENSIONALITY IMPLIES A POLYNOMIAL TIME APPROXIMATION SCHEME
    Bartal, Yair
    Gottlieb, Lee-Ad
    Krauthgamer, Robert
    SIAM JOURNAL ON COMPUTING, 2016, 45 (04) : 1563 - 1581
  • [25] Adaptivity Based on the Constitutive Error for the Maxwell's Eigenvalue Problem on Polyhedral Meshes
    Cicuttin, Matteo
    Specogna, Ruben
    Trevisan, Francesco
    IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (06)
  • [26] Residual-based a posteriori error estimation for the Maxwell's eigenvalue problem
    Boffi, Daniele
    Gastaldi, Lucia
    Rodriguez, Rodolfo
    Sebestova, Ivana
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (04) : 1710 - 1732
  • [27] Adaptivity based on the constitutive error for the Maxwell's eigenvalue problem on polyhedral meshes
    Cicuttin, Matteo
    Specogna, Ruben
    Trevisan, Francesco
    2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,
  • [28] Numerical Approximation of the Fractional Rayleigh-Stokes Problem Arising in a Generalised Maxwell Fluid
    Le Dinh Long
    Moradi, Bahman
    Nikan, Omid
    Avazzadeh, Zakieh
    Lopes, Antonio M.
    FRACTAL AND FRACTIONAL, 2022, 6 (07)
  • [29] An efficient finite element method based on dimension reduction scheme for a fourth-order Steklov eigenvalue problem
    Zhang, Hui
    Liu, Zixin
    Zhang, Jun
    OPEN MATHEMATICS, 2022, 20 (01): : 666 - 681
  • [30] Complex Chebyshev approximation for IIR digital filters based on eigenvalue problem
    Zhang, X
    Suzuki, K
    Yoshikawa, T
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 2000, 47 (12): : 1429 - 1436