Combining channel-wise joint attention and temporal attention in graph convolutional networks for skeleton-based action recognition

被引:1
|
作者
Sun, Zhonghua [1 ,2 ,3 ]
Wang, Tianyi [1 ]
Dai, Meng [1 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Beijing Lab Adv Informat Networks, Beijing 100124, Peoples R China
[3] Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
关键词
Skeleton-based action recognition; Graph convolutional network; Channel-wise joints attention; Temporal attention;
D O I
10.1007/s11760-022-02465-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graph convolutional networks (GCNs) have been shown to be effective in performing skeleton-based action recognition, as graph topology has advantages in representing the natural connectivity of the human bodies. Nevertheless, it is challenging to effectively model the human joints spatially and temporally, and we are lacking attentional mechanisms for critical temporal frames and important skeletal points. In this work, we propose a novel GCNs combined with channel-wise joints and temporal attention for skeleton-based action recognition. Our temporal attention module captures the long-term dependence of time and then enhances the temporal semantics of key frames. In addition, we design a channel-wise attention module that fuses multi-channel joint weights with the topological map to capture the attention of nodes at different actions along the channel dimension. We propose to concatenate joint and bone together along the channel dimension as the joint & bone (J & B) modality, J & B modality can extract hybrid action patterns under the coalition of channel-wise joint attention. We prove the powerful spatio-temporal modeling capability of our model on three widely used dataset, NTU-RGB D, NTU RGB+D 120 and Northwestern-UCLA. Compared with leading GCN-based methods, we achieve performance comparable to the-state-of-art.
引用
收藏
页码:2481 / 2488
页数:8
相关论文
共 50 条
  • [31] A tri-attention enhanced graph convolutional network for skeleton-based action recognition
    Li, Xingming
    Zhai, Wei
    Cao, Yang
    IET COMPUTER VISION, 2021, 15 (02) : 110 - 121
  • [32] Graph convolutional network with STC attention and adaptive normalization for skeleton-based action recognition
    Zhou, Haiyun
    Xiang, Xuezhi
    Qiu, Yujian
    Liu, Xuzhao
    IMAGING SCIENCE JOURNAL, 2023, 71 (07): : 636 - 646
  • [33] Memory Attention Networks for Skeleton-Based Action Recognition
    Li, Ce
    Xie, Chunyu
    Zhang, Baochang
    Han, Jungong
    Zhen, Xiantong
    Chen, Jie
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (09) : 4800 - 4814
  • [34] Memory Attention Networks for Skeleton-based Action Recognition
    Xie, Chunyu
    Li, Ce
    Zhang, Baochang
    Chen, Chen
    Han, Jungong
    Liu, Jianzhuang
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 1639 - 1645
  • [35] Cross-Channel Graph Convolutional Networks for Skeleton-Based Action Recognition
    Xie, Jun
    Xin, Wentian
    Liu, Ruyi
    Sheng, Lijie
    Liu, Xiangzeng
    Gao, Xuesong
    Zhong, Sheng
    Tang, Lei
    Miao, Qiguang
    IEEE ACCESS, 2021, 9 (09): : 9055 - 9065
  • [36] Skeleton-Based Human Action Recognition with Spatial and Temporal Attention-Enhanced Graph Convolution Networks
    Xu, Fen
    Shi, Pengfei
    Zhang, Xiaoping
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2024, 28 (06) : 1367 - 1379
  • [37] Attention-Based Generative Graph Convolutional Network for Skeleton-Based Human Action Recognition
    Yang, Kai
    Ding, Xiaolu
    Chen, Wai
    ICVIP 2019: PROCEEDINGS OF 2019 3RD INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, 2019, : 1 - 6
  • [38] Attention-based generative graph convolutional network for skeleton-based human action recognition
    Yang, Kai
    Ding, Xiaolu
    Chen, Wai
    ACM International Conference Proceeding Series, 2019, : 1 - 6
  • [39] Spatial-Temporal gated graph attention network for skeleton-based action recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 929 - 939
  • [40] Spatial-Temporal Dynamic Graph Attention Network for Skeleton-Based Action Recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    Saba, Tanzila
    Rehman, Amjad
    Bahaj, Saeed Ali
    IEEE ACCESS, 2023, 11 : 21546 - 21553