Liouville Type Theorems for Fractional Parabolic Problems

被引:0
|
作者
Duong, Anh Tuan [1 ]
Nguyen, Van Hoang [2 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, 1 Dai Co Viet, Hai Ba Trung, Ha Noi, Vietnam
[2] FPT Univ, Dept Math, Hanoi, Vietnam
关键词
Liouville-type theorem; Fractional parabolic system; Fractional parabolic inequality; Fujita result; Critical exponent; BLOW-UP; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; LOCAL BEHAVIOR; SYSTEMS; NONEXISTENCE; LAPLACIAN; SYMMETRY; DECAY;
D O I
10.1007/s10884-021-10082-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is twofold. Firstly, we establish optimal Liouville type theorems for nonnegative or positive supersolutions of the fractional parabolic equation u(t) + (-Delta)(s)u = u(p) on the whole space R-N x R, where p is an element of R and 0 < s < 1. Secondly, we study similar questions for the fractional parabolic system {u(t) + (-Delta)(s)u = v(p), v(t) + (-Delta)(s)v = u(q) where p and q are real numbers.
引用
收藏
页码:3187 / 3200
页数:14
相关论文
共 50 条
  • [31] Liouville type results for a class of quasilinear parabolic problems
    Rhouma, N. Belhaj
    Seddik, M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (10)
  • [32] Liouville theorems and universal estimates for superlinear parabolic problems without scale invariance
    Quittner, Pavol
    Souplet, Philippe
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 427 : 404 - 441
  • [33] Liouville-type theorems for fractional Hardy–Hénon systems
    Kui Li
    Meng Yu
    Zhitao Zhang
    Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [34] Liouville-type theorems for fractional Hardy-Henon systems
    Li, Kui
    Yu, Meng
    Zhang, Zhitao
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (01):
  • [35] LIOUVILLE TYPE THEOREMS FOR POLY-HARMONIC NAVIER PROBLEMS
    Cao, Linfen
    Chen, Wenxiong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (09) : 3937 - 3955
  • [36] Liouville-type theorems for certain nonlinear nonlocal problems
    Mitidieri, E
    Pohozaev, SI
    DOKLADY MATHEMATICS, 2004, 70 (03) : 954 - 958
  • [37] A PRIORI ESTIMATES FOR ELLIPTIC PROBLEMS VIA LIOUVILLE TYPE THEOREMS
    Baldelli, Laura
    Filippucci, Roberta
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (07): : 1883 - 1898
  • [38] Liouville theorems for Kirchhoff-type parabolic equations and system on the Heisenberg group
    Shi, Wei
    OPEN MATHEMATICS, 2023, 21 (01):
  • [39] Some Liouville theorems for the fractional Laplacian
    Chen, Wenxiong
    D'Ambrosio, Lorenzo
    Li, Yan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 : 370 - 381
  • [40] Liouville theorems in halfspaces for parabolic hypoelliptic equations
    Kogoj, Alessia E.
    Lanconelli, Ermanno
    RICERCHE DI MATEMATICA, 2006, 55 (02) : 267 - 282