AAGNet: A graph neural network towards multi-task machining feature recognition

被引:5
|
作者
Wu, Hongjin [1 ]
Lei, Ruoshan [1 ]
Peng, Yibing [1 ]
Gao, Liang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan, Peoples R China
关键词
Machining feature recognition; Attributed adjacency graph representation; Instance segmentation; Graph neural network; MANUFACTURING FEATURE RECOGNITION; AUTOMATIC RECOGNITION; DECOMPOSITION; FRAMEWORK; DESIGN;
D O I
10.1016/j.rcim.2023.102661
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Machining feature recognition (MFR) is an essential step in computer-aided process planning (CAPP) that infers manufacturing semantics from the geometric entities in CAD models. Traditional rule-based MFR methods struggle to handle intersecting features due to the complexity of representing their variable topological structures. This motivates the development of deep-learning-based methods, which can learn from data and overcome the limitations of rule-based methods. However, some existing deep learning methods compromise geometric and topological information when using certain representations such as voxel or point cloud. To address these challenges, we propose a novel graph neural network, named AAGNet, for automatic feature recognition using a geometric Attributed Adjacency Graph (gAAG) representation that preserves topological, geometric, and extended attributes from neutral boundary representation (B-Rep) models. Furthermore, some existing methods (such as UV-Net, Hierarchical CADNet) lack the capability of machining feature instance segmentation, which is a sub-task of feature recognition that requires the network to identify different machining features and the B-Rep face entities that constitute them, and it is a crucial task for subsequent process planning. AAGNet is designed as a multi-task network that can perform semantic segmentation, instance segmentation, and bottom face segmentation simultaneously for recognizing machining features, the faces associated with those features, and their bottom faces. The AAGNet is evaluated on various open-source datasets, including MFCAD, MFCAD++, and the newly introduced MFInstSeg dataset with over 60,000 STEP files and machining feature instance labels. The experimental results demonstrate that AAGNet outperforms other state-of-the-art methods in terms of accuracy and complexity, showing its potential as a flexible solution for MFR in CAPP.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [21] A Pseudo-task Design in Multi-task Learning Deep Neural Network for Speaker Recognition
    Lu, Xugang
    Shen, Peng
    Tsao, Yu
    Kawai, Hisashi
    2016 10TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2016,
  • [22] Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation
    Wang, Hongwei
    Zhang, Fuzheng
    Zhao, Miao
    Li, Wenjie
    Xie, Xing
    Guo, Minyi
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 2000 - 2010
  • [23] MTFuzz: Fuzzing with a Multi-task Neural Network
    She, Dongdong
    Krishna, Rahul
    Yan, Lu
    Jana, Suman
    Ray, Baishakhi
    PROCEEDINGS OF THE 28TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING (ESEC/FSE '20), 2020, : 737 - 749
  • [24] Multi-Task Graph Neural Network for Truck Speed Prediction Under ExtremeWeather Conditions
    Ramhormozi, Reza Safarzadeh
    Mozhdehi, Arash
    Kalantari, Saeid
    Wang, Yunli
    Sun, Sun
    Wang, Xin
    30TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2022, 2022, : 663 - 673
  • [25] Feature Analysis of Unsupervised Learning for Multi-task Classification Using Convolutional Neural Network
    Kim, Jonghong
    Bukhari, Waqas
    Lee, Minho
    NEURAL PROCESSING LETTERS, 2018, 47 (03) : 783 - 797
  • [26] Multi-Task Adversarial Network for Disentangled Feature Learning
    Liu, Yang
    Wang, Zhaowen
    Jin, Hailin
    Wassell, Ian
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3743 - 3751
  • [27] Feature Analysis of Unsupervised Learning for Multi-task Classification Using Convolutional Neural Network
    Jonghong Kim
    Waqas Bukhari
    Minho Lee
    Neural Processing Letters, 2018, 47 : 783 - 797
  • [28] Combining a multi-feature neural network with multi-task learning for emergency calls severity prediction
    Kanaan, Marianne Abi
    Couchot, Jean-Francois
    Guyeux, Christophe
    Laiymani, David
    Atechian, Talar
    Darazi, Rony
    ARRAY, 2024, 21
  • [29] Co-attentive multi-task convolutional neural network for facial expression recognition
    Yu, Wenmeng
    Xu, Hua
    PATTERN RECOGNITION, 2022, 123
  • [30] Speech Emotion Recognition Based on Multi-Task Learning Using a Convolutional Neural Network
    Kim, Nam Kyun
    Lee, Jiwon
    Ha, Hun Kyu
    Lee, Geon Woo
    Lee, Jung Hyuk
    Kim, Hong Kook
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 704 - 707