Semi-Supervised Unpaired Medical Image Segmentation Through Task-Affinity Consistency

被引:25
|
作者
Chen, Jingkun [1 ,2 ]
Zhang, Jianguo [1 ,3 ,4 ]
Debattista, Kurt [2 ]
Han, Jungong [2 ,5 ]
机构
[1] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
[2] Univ Warwick, Warwick Mfg Grp, Coventry CV4 7AL, England
[3] Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China
[4] Peng Cheng Lab, Shenzhen 518066, Peoples R China
[5] Aberystwyth Univ, Dept Comp Sci, Aberystwyth SY23 3FL, Wales
关键词
Image segmentation; Task analysis; Feature extraction; Training; Semisupervised learning; Medical diagnostic imaging; Knowledge transfer; Semi-supervised; segmentation; contextual; structural; task-affinity; consistency;
D O I
10.1109/TMI.2022.3213372
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning-based semi-supervised learning (SSL) algorithms are promising in reducing the cost of manual annotation of clinicians by using unlabelled data, when developing medical image segmentation tools. However, to date, most existing semi-supervised learning (SSL) algorithms treat the labelled images and unlabelled images separately and ignore the explicit connection between them; this disregards essential shared information and thus hinders further performance improvements. To mine the shared information between the labelled and unlabelled images, we introduce a class-specific representation extraction approach, in which a task-affinity module is specifically designed for representation extraction. We further cast the representation into two different views of feature maps; one is focusing on low-level context, while the other concentrates on structural information. The two views of feature maps are incorporated into the task-affinity module, which then extracts the class-specific representations to aid the knowledge transfer from the labelled images to the unlabelled images. In particular, a task-affinity consistency loss between the labelled images and unlabelled images based on the multi-scale class-specific representations is formulated, leading to a significant performance improvement. Experimental results on three datasets show that our method consistently outperforms existing state-of-the-art methods. Our findings highlight the potential of consistency between class-specific knowledge for semi-supervised medical image segmentation. The code and models are to be made publicly available at https://github.com/jingkunchen/TAC.
引用
收藏
页码:594 / 605
页数:12
相关论文
共 50 条
  • [31] Semi-Supervised Unpaired Multi-Modal Learning for Label-Efficient Medical Image Segmentation
    Zhu, Lei
    Yang, Kaiyuan
    Zhang, Meihui
    Chan, Ling Ling
    Ng, Teck Khim
    Ooi, Beng Chin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 394 - 404
  • [32] Semi-supervised Medical Image Segmentation with Confidence Calibration
    Xu, Qisen
    Wu, Qian
    Hu, Yiqiu
    Jin, Bo
    Hu, Bin
    Zhu, Fengping
    Li, Yuxin
    Wang, Xiangfeng
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [33] Semi-supervised Retinal Vessel Segmentation Through Point Consistency
    Hu, Jingfei
    Qiu, Linwei
    Wang, Hua
    Zhang, Jicong
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XIII, 2024, 14437 : 149 - 161
  • [34] Semi-supervised Image Segmentation
    Lazarova, Gergana Angelova
    ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS, AND APPLICATIONS, 2014, 8722 : 59 - 68
  • [35] Uncertainty-aware pseudo-label and consistency for semi-supervised medical image segmentation
    Lu, Liyun
    Yin, Mengxiao
    Fu, Liyao
    Yang, Feng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [36] Consistency-Guided Meta-learning for Bootstrapping Semi-supervised Medical Image Segmentation
    Wei, Qingyue
    Yu, Lequan
    Li, Xianhang
    Shao, Wei
    Xie, Cihang
    Xing, Lei
    Zhou, Yuyin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IV, 2023, 14223 : 183 - 193
  • [37] Dynamic graph consistency and self-contrast learning for semi-supervised medical image segmentation
    Li, Gang
    Xie, Jinjie
    Zhang, Ling
    Cheng, Guijuan
    Zhang, Kairu
    Bai, Mingqi
    NEURAL NETWORKS, 2025, 184
  • [38] CROSS-LEVEL CONTRASTIVE LEARNING AND CONSISTENCY CONSTRAINT FOR SEMI-SUPERVISED MEDICAL IMAGE SEGMENTATION
    Zhao, Xinkai
    Fang, Chaowei
    Fan, De-Jun
    Lin, Xutao
    Gao, Feng
    Li, Guanbin
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [39] MVPCL: multi-view prototype consistency learning for semi-supervised medical image segmentation
    Li, Xiafan
    Quan, Hongyan
    VISUAL COMPUTER, 2025, 41 (03): : 1841 - 1854
  • [40] Semi-Supervised Medical Image Segmentation Based on Frequency Domain Aware Stable Consistency Regularization
    Ouyang, Yihao
    Li, Peipei
    Zhang, Haixiang
    Hu, Xuegang
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025,