Research Progress on the Composite Methods of Composite Electrolytes for Solid-State Lithium Batteries

被引:1
|
作者
Wang, Xu [1 ,2 ]
Huang, Sipeng [1 ]
Peng, Yiting [1 ]
Min, Yulin [1 ,3 ]
Xu, Qunjie [1 ,3 ]
机构
[1] Shanghai Univ Elect Power, Shanghai Engn Res Ctr Energy Saving Heat Exchange, Shanghai Key Lab Mat Protect & Adv Mat Elect Power, Shanghai 200090, Peoples R China
[2] China Three Gorges Corp, Sci & Technol Res Inst, Beijing 101100, Peoples R China
[3] Tongji Univ, Inst Pollut Control & Ecol Secur, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-State Lithium Battery; Composite Electrolyte; Composite Method; Internal Structure; SUCCINONITRILE-BASED ELECTROLYTE; POLYMER ELECTROLYTES; HYBRID ELECTROLYTES; CONDUCTIVITY ENHANCEMENT; IONIC-CONDUCTIVITY; DENDRITE-FREE; METAL ANODE; LI METAL; ENERGY; PERFORMANCE;
D O I
10.1002/cssc.202301262
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the current challenging energy storage and conversion landscape, solid-state lithium metal batteries with high energy conversion efficiency, high energy density, and high safety stand out. Due to the limitations of material properties, it is difficult to achieve the ideal requirements of solid electrolytes with a single-phase electrolyte. A composite solid electrolyte is composed of two or more different materials. Composite electrolytes can simultaneously offer the advantages of multiple materials. Through different composite methods, the merits of various materials can be incorporated into the most essential part of the battery in a specific form. Currently, more and more researchers are focusing on composite methods for combining components in composite electrolytes. The ion transport capacity, interface stability, machinability, and safety of electrolytes can be significantly improved by selecting appropriate composite methods. This review summarizes the composite methods used for the components of composite electrolytes, such as filler blending, embedded framework, and multilayer bonding. It also discusses the future development trends of all-solid-state lithium batteries (ASSLBs). Composite electrolytes are a promising direction for solving the practical application problems of solid-state lithium batteries. The composite method greatly affects the internal structure and performance of composite electrolytes. This review summarizes different composite methods such as filler blending, embedded skeleton, and multilayer bonding, and looks forward to the development trend of solid-state lithium batteries. image
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Recent Progress of Hybrid Solid-State Electrolytes for Lithium Batteries
    Liu, Xiaoyan
    Li, Xinru
    Li, Hexing
    Wu, Hao Bin
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (69) : 18293 - 18306
  • [22] Solid Polymer Electrolytes-Based Composite Cathodes for Advanced Solid-State Lithium Batteries
    Kulkarni, Uddhav
    Cho, Won-Jang
    Cho, Seok-Kyu
    Hong, Jeong-Jin
    Shejale, Kiran P.
    Yi, Gi-Ra
    [J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024, 41 (02) : 385 - 402
  • [23] Solid Polymer Electrolytes-Based Composite Cathodes for Advanced Solid-State Lithium Batteries
    Uddhav Kulkarni
    Won-Jang Cho
    Seok-Kyu Cho
    Jeong-Jin Hong
    Kiran P. Shejale
    Gi-Ra Yi
    [J]. Korean Journal of Chemical Engineering, 2024, 41 : 385 - 402
  • [24] Composite solid electrolytes for all-solid-state lithium batteries
    Dirican, Mahmut
    Yan, Chaoyi
    Zhu, Pei
    Zhang, Xiangwu
    [J]. MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2019, 136 (27-46): : 27 - 46
  • [25] Functional inorganic additives in composite solid-state electrolytes for flexible lithium metal batteries
    Huang, Honglan
    Liu, Chao
    Liu, Ziya
    Wu, Yunyan
    Liu, Yifan
    Fan, Jinbo
    Zhang, Gen
    Xiong, Pan
    Zhu, Junwu
    [J]. ADVANCED POWDER MATERIALS, 2024, 3 (01):
  • [26] Stable composite electrolytes of PVDF modified by inorganic particles for solid-state lithium batteries
    Pei, Ren-Jie
    Song, Tianyuan
    Sun, Liangliang
    Li, You-Fen
    Yang, Ru
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2022, 105 (08) : 5262 - 5273
  • [27] Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries
    Yu, Qingjiang
    Jiang, Kecheng
    Yu, Cuiling
    Chen, Xianjin
    Zhang, Chuanjian
    Yao, Yi
    Jiang, Bin
    Long, Huijin
    [J]. CHINESE CHEMICAL LETTERS, 2021, 32 (09) : 2659 - 2678
  • [28] Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries
    Qingjiang Yu
    Kecheng Jiang
    Cuiling Yu
    Xianjin Chen
    Chuanjian Zhang
    Yi Yao
    Bin Jiang
    Huijin Long
    [J]. Chinese Chemical Letters, 2021, 32 (09) : 2659 - 2678
  • [29] Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries
    Li, Song
    Zhang, Shi-Qi
    Shen, Lu
    Liu, Qi
    Ma, Jia-Bin
    Lv, Wei
    He, Yan-Bing
    Yang, Quan-Hong
    [J]. ADVANCED SCIENCE, 2020, 7 (05)
  • [30] Recent advances of composite electrolytes for solid-state Li batteries
    Xu, Laiqiang
    Li, Jiayang
    Shuai, Honglei
    Luo, Zheng
    Wang, Baowei
    Fang, Susu
    Zou, Guoqiang
    Hou, Hongshuai
    Peng, Hongjian
    Ji, Xiaobo
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2022, 67 : 524 - 548