A New Class of Leonardo Hybrid Numbers and Some Remarks on Leonardo Quaternions over Finite Fields

被引:3
|
作者
Tan, Elif [1 ]
Savin, Diana [2 ]
Yilmaz, Semih [3 ]
机构
[1] Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Turkiye
[2] Transilvania Univ Brasov, Dept Math & Comp Sci, Brasov 500091, Romania
[3] Kirikkale Univ, Dept Actuarial Sci, TR-71450 Kirikkale, Turkiye
关键词
hybrid numbers; quaternions; Fibonacci numbers; Leonardo numbers; quantum integer; zero divisor; finite fields;
D O I
10.3390/math11224701
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a new class of Leonardo hybrid numbers that incorporate quantum integers into their components. This advancement presents a broader generalization of the q-Leonardo hybrid numbers. We explore some fundamental properties associated with these numbers. Moreover, we study special Leonardo quaternions over finite fields. In particular, we determine the Leonardo quaternions that are zero divisors or invertible elements in the quaternion algebra over the finite field Zp for special values of prime integer p.
引用
收藏
页数:14
相关论文
共 50 条