pyMPSLib: A robust and scalable open-source Python']Python library for mutiple-point statistical simulation

被引:4
|
作者
Chen, Qiyu [1 ,2 ,3 ]
Zhou, Ruihong [1 ,3 ]
Liu, Cui [1 ,3 ]
Huang, Qianhong [1 ,3 ]
Cui, Zhesi [1 ,3 ]
Liu, Gang [1 ,2 ,3 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China
[3] China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan 430074, Peoples R China
关键词
Multiple-point statistics; Geostatistics; Open-source [!text type='Python']Python[!/text] library; Stochastic simulation; Heterogeneous structures; MULTIPLE; INFORMATION;
D O I
10.1007/s12145-023-01086-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Python has become an essential programming language for scientific computing and data analysis and processing. Various multiple-point statistics (MPS) algorithms are used to characterize complex heterogeneous structures and phenomena in earth sciences. However, there is currently no Python library that integrates mainstream MPS methods for simulation and computation in geosciences. Aiming to establish a stable MPS tool, we developed an open-source Python library of commonly used MPS methods, named pyMPSLib. pyMPSLib consists of ENESIM, SNESIM, and DS algorithms and provides a flexible and convenient API interface. To ensure the maintainability of pyMPSLib, the Python objects and toolkits of MPS algorithms are defined and implemented. To improve the compatibility and extensibility of the presented library, uniform coding standard is adopted in pyMPSLib. We performed the parameter sensitivity analysis under multiple configurations to validate the performance of the library. This open-source library also provides optional tools to quantitatively evaluate the realizations of the integrated MPS methods.
引用
收藏
页码:3179 / 3190
页数:12
相关论文
共 50 条
  • [31] problexity-An open-source Python']Python library for supervised learning problem complexity assessment
    Komorniczak, Joanna
    Ksieniewicz, Pawel
    [J]. NEUROCOMPUTING, 2023, 521 : 126 - 136
  • [32] Application of Open-Source, Python']Python-Based Tools for the Simulation of Electrochemical Systems
    Molel, Evans Leshinka
    Fuller, Thomas F.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (10)
  • [33] CoSimPy: An open-source python']python library for MRI radiofrequency Coil EM/Circuit Cosimulation
    Zanovello, Umberto
    Seifert, Frank
    Bottauscio, Oriano
    Winter, Lukas
    Zilberti, Luca
    Ittermann, Bernd
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 216
  • [34] HYSUPP: AN OPEN-SOURCE HYPERSPECTRAL UNMIXING PYTHON']PYTHON PACKAGE
    Rasti, Behnood
    Zouaoui, Alexandre
    Mairal, Julien
    Chanussot, Jocelyn
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1134 - 1137
  • [35] OpenSoundscape: An open-source bioacoustics analysis package for Python']Python
    Lapp, Sam
    Rhinehart, Tessa
    Freeland-Haynes, Louis
    Khilnani, Jatin
    Syunkova, Alexandra
    Kitzes, Justin
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2023, 14 (09): : 2321 - 2328
  • [36] Padasip: An open-source Python']Python toolbox for adaptive filtering
    Cejnek, Matous
    Vrba, Jan
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 65
  • [37] Open-source coupled aerostructural optimization using Python']Python
    Jasa, John P.
    Hwang, John T.
    Martins, Joaquim R. R. A.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 57 (04) : 1815 - 1827
  • [38] Python']Python Indian Weather Radar Toolkit (pyiwr): An open-source Python']Python library for processing, analyzing and visualizing weather radar data
    Singh, Nitig
    Tyagi, Vaibhav
    Das, Saurabh
    Sahoo, Udaya Kumar
    Kundu, Shyam Sundar
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 81
  • [39] pyxopto: An Open-Source Python']Python Library with Utilities for Fast Light Propagation Modeling in Turbid Media
    Naglic, Peter
    Zelinskyi, Yevhen
    Pernus, Franjo
    Likar, Bostjan
    Burmen, Miran
    [J]. DIFFUSE OPTICAL SPECTROSCOPY AND IMAGING VIII, 2021, 11920
  • [40] An open source Python']Python library for environmental isotopic modelling
    Hassanzadeh, Ashkan
    Valdivielso, Sonia
    Vazquez-Sune, Enric
    Criollo, Rotman
    Corbella, Merce
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)