Uncertainty-aware deep learning for trustworthy prediction of long-term outcome after endovascular thrombectomy

被引:1
|
作者
Vicario, Celia Martin [1 ,2 ]
Salas, Dalia Rodriguez [1 ,2 ]
Maier, Andreas [2 ]
Hock, Stefan [1 ]
Kuramatsu, Joji [3 ]
Kallmuenzer, Bernd [3 ]
Thamm, Florian [4 ]
Taubmann, Oliver [4 ]
Ditt, Hendrik [4 ]
Schwab, Stefan [3 ]
Doerfler, Arnd [1 ]
Muehlen, Iris [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nuremberg, Univ Hosp Erlangen, Dept Neuroradiol, Erlangen, Germany
[2] Friedrich Alexander Univ, Pattern Recognit Lab, Erlangen, Germany
[3] Friedrich Alexander Univ Erlangen Nuremberg, Univ Hosp Erlangen, Dept Neurol, Erlangen, Germany
[4] Siemens Healthineers, Forchheim, Germany
关键词
COLLATERAL FLOW; ISCHEMIC-STROKE; CT ANGIOGRAPHY; CIRCULATION; QUANTIFICATION; INFORMATION; SELECTION;
D O I
10.1038/s41598-024-55761-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acute ischemic stroke (AIS) is a leading global cause of mortality and morbidity. Improving long-term outcome predictions after thrombectomy can enhance treatment quality by supporting clinical decision-making. With the advent of interpretable deep learning methods in recent years, it is now possible to develop trustworthy, high-performing prediction models. This study introduces an uncertainty-aware, graph deep learning model that predicts endovascular thrombectomy outcomes using clinical features and imaging biomarkers. The model targets long-term functional outcomes, defined by the three-month modified Rankin Score (mRS), and mortality rates. A sample of 220 AIS patients in the anterior circulation who underwent endovascular thrombectomy (EVT) was included, with 81 (37%) demonstrating good outcomes (mRS <=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le$$\end{document}2). The performance of the different algorithms evaluated was comparable, with the maximum validation under the curve (AUC) reaching 0.87 using graph convolutional networks (GCN) for mRS prediction and 0.86 using fully connected networks (FCN) for mortality prediction. Moderate performance was obtained at admission (AUC of 0.76 using GCN), which improved to 0.84 post-thrombectomy and to 0.89 a day after stroke. Reliable uncertainty prediction of the model could be demonstrated.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Uncertainty-aware deep learning for trustworthy prediction of long-term outcome after endovascular thrombectomy
    Celia Martín Vicario
    Dalia Rodríguez Salas
    Andreas Maier
    Stefan Hock
    Joji Kuramatsu
    Bernd Kallmuenzer
    Florian Thamm
    Oliver Taubmann
    Hendrik Ditt
    Stefan Schwab
    Arnd Dörfler
    Iris Muehlen
    [J]. Scientific Reports, 14
  • [2] Uncertainty-Aware Deep Learning: A Promising Tool for Trustworthy Fault Diagnosis
    Jiaxin Ren
    Jingcheng Wen
    Zhibin Zhao
    Ruqiang Yan
    Xuefeng Chen
    Asoke K. Nandi
    [J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11 (06) : 1317 - 1330
  • [3] Uncertainty-Aware Deep Learning: A Promising Tool for Trustworthy Fault Diagnosis
    Ren, Jiaxin
    Wen, Jingcheng
    Zhao, Zhibin
    Yan, Ruqiang
    Chen, Xuefeng
    Nandi, Asoke K.
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (06) : 1317 - 1330
  • [4] TrustGeo: Uncertainty-Aware Dynamic Graph Learning for Trustworthy IP Geolocation
    Tai, Wenxin
    Chen, Bin
    Zhou, Fan
    Zhong, Ting
    Trajcevski, Goce
    Wang, Yong
    Chen, Kai
    [J]. PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 4862 - 4871
  • [5] Long-term mortality after endovascular thrombectomy for stroke
    Junttola, Ulla
    Lahtinen, Sanna
    Isokangas, Juha-Matti
    Hietanen, Siiri
    Vakkala, Merja
    Kaakinen, Timo
    Liisanantti, Janne
    [J]. JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2022, 31 (12):
  • [6] Uncertainty-Aware Deep Learning Architectures for Highly Dynamic Air Quality Prediction
    Mokhtari, Ichrak
    Bechkit, Walid
    Rivano, Herve
    Yaici, Mouloud Riadh
    [J]. IEEE ACCESS, 2021, 9 : 14765 - 14778
  • [7] Uncertainty-Aware Deep Learning Based Deformable Registration
    Grigorescu, Irina
    Uus, Alena
    Christiaens, Daan
    Cordero-Grande, Lucilio
    Hutter, Jana
    Batalle, Dafnis
    Edwards, A. David
    Hajnal, Joseph V.
    Modat, Marc
    Deprez, Maria
    [J]. UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, AND PERINATAL IMAGING, PLACENTAL AND PRETERM IMAGE ANALYSIS, 2021, 12959 : 54 - 63
  • [8] Training Uncertainty-Aware Classifiers with Conformalized Deep Learning
    Einbinder, Bat-Sheva
    Romano, Yaniv
    Sesia, Matteo
    Zhou, Yanfei
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [9] Uncertainty-Aware Data Aggregation for Deep Imitation Learning
    Cui, Yuchen
    Isele, David
    Niekum, Scott
    Fujimura, Kikuo
    [J]. 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 761 - 767
  • [10] Uncertainty-aware autonomous sensing with deep reinforcement learning
    Murad, Abdulmajid
    Kraemer, Frank Alexander
    Bach, Kerstin
    Taylor, Gavin
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 156 : 242 - 253