Anomaly Detection for IoT Networks: Empirical Study

被引:0
|
作者
Elsayed, Marwa A. [1 ]
Russell, Patrick [1 ]
Nandy, Biswajit [2 ]
Seddigh, Nabil [2 ]
Zincir-Heywood, Nur [1 ]
机构
[1] Dalhousie Univ, Fac Comp Sci, Halifax, NS B3H 4R2, Canada
[2] Solana Networks, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
anomaly detection; unsupervised learning; IoT; ATTACK DETECTION; FRAMEWORK; INTERNET; THINGS;
D O I
10.1109/CCECE58730.2023.10288813
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Internet of Things (IoT) actively transforms physical objects, including portable, wearable, and implantable sensors, into an information ecosystem that enriches the technology and data in every aspect of life. This paper examines two anomaly detection approaches: novelty and outlier, for IoT networks. In this respect, we leverage four unsupervised learning algorithms, namely Isolation Forest (IF), Local Outlier Factor (LOF), One-Class Support Vector Machine (OSVM), and variational encoder (AE), on four publicly available IoT datasets. The experiments reveal that by embracing the novelty approach by considering only pure benign data for training, the AE model achieves a high F1-score and AUC up to 97% and 0.97.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Anomaly-Based Intrusion Detection Model Using Deep Learning for IoT Networks
    Alsoufi, Muaadh A.
    Siraj, Maheyzah Md
    Ghaleb, Fuad A.
    Al-Razgan, Muna
    Al-Asaly, Mahfoudh Saeed
    Alfakih, Taha
    Saeed, Faisal
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 141 (01): : 823 - 845
  • [42] Design and Development of a Deep Learning-Based Model for Anomaly Detection in IoT Networks
    Ullah, Imtiaz
    Mahmoud, Qusay H.
    IEEE ACCESS, 2021, 9 (09): : 103906 - 103926
  • [43] Generative Adversarial Network and Auto Encoder based Anomaly Detection in Distributed IoT Networks
    Tian Zixu
    Liyanage, Kushan Sudheera Kalupahana
    Gurusamy, Mohan
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [44] Detecting Anomaly Data for IoT Sensor Networks
    Wei, Zhe
    Wang, Fang
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [45] A study in using neural networks for anomaly and misuse detection
    Ghosh, AK
    Schwartzbard, A
    USENIX ASSOCIATION PROCEEDINGS OF THE EIGHTH USENIX SECURITY SYMPOSIUM (SECURITY '99), 1999, : 141 - 151
  • [46] A Comparative Study of Anomaly Detection Techniques for IoT Security Using Adaptive Machine Learning for IoT Threats
    Alsalman, Dheyaaldin
    IEEE ACCESS, 2024, 12 : 14719 - 14730
  • [47] IoT anomaly detection methods and applications: A survey
    Chatterjee, Ayan
    Ahmed, Bestoun S.
    INTERNET OF THINGS, 2022, 19
  • [48] Towards IoT Anomaly Detection with Tsetlin Machines
    Gunvaldsen, Ole
    Thorsen, Henning Blomfeldt
    Andersen, Per-Arne
    Granmo, Ole-Christoffer
    Goodwin, Morten
    2023 INTERNATIONAL SYMPOSIUM ON THE TSETLIN MACHINE, ISTM, 2023,
  • [49] Learning Latent Representation for IoT Anomaly Detection
    Ly Vu
    Van Loi Cao
    Quang Uy Nguyen
    Nguyen, Diep N.
    Dinh Thai Hoang
    Dutkiewicz, Eryk
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (05) : 3769 - 3782
  • [50] Identifying Device Types for Anomaly Detection in IoT
    Tien, Chin-Wei
    Huang, Tse-Yung
    Chen, Ping Chun
    Wang, Jenq-Haur
    MACHINE LEARNING FOR NETWORKING, MLN 2020, 2021, 12629 : 337 - 348