Effect of Heat-Treatment Conditions on the Microstructure and the Static Fracture Toughness of an α + β VT23 Titanium Alloy

被引:1
|
作者
Gladkovskii, S. V. [1 ]
Veselova, V. E. [1 ]
Vichuzhanin, D. I. [1 ]
Zichenkov, M. Ch. [2 ]
Dubinskii, S. V. [2 ]
Kovalev, N. I. [2 ]
Kulemin, A. V. [2 ]
Kovalev, I. E. [2 ]
机构
[1] Russian Acad Sci, Gorkunov Inst Engn Sci, Ural Branch, Ekaterinburg 620049, Russia
[2] Cent Aerohydrodynam Inst, Zhukovskii 140180, Moscow Oblast, Russia
来源
RUSSIAN METALLURGY | 2023年 / 2023卷 / 04期
关键词
two-phase titanium alloy; quenching; aging; metastable beta phase; martensitic transformation; mechanical properties; static fracture toughness; microstructure of fracture surface;
D O I
10.1134/S0036029523040092
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The mechanical properties and microstructure of an alpha + beta VT23 titanium alloy are studied after quenching under various conditions and strengthening aging. Aging at 500 degrees C for 8 h is shown to decrease the static fracture toughness (SFT) of the alloy quenched from 800 or 860 degrees C by a factor of 1.4 and 2.4, respectively. The highest set of strength properties and static fracture toughness (sigma(0.2) = 1130 MPa, sigma(u) = 1252 MPa, K-1c = 39.2 MPa m(1/2)) at a retained sufficient structural strength reserve T = 44.4 x 10(3) MPa2 m(1/2) is achieved after quenching from 800 degrees C and subsequent aging at 500 degrees C for 8 h. The regularities of the evolution of the phase composition and the structure of the alloy as a function of heat-treatment conditions are found. The peculiarities of the macro- and microstructure of the fracture surfaces of compact ST specimens after static fracture toughness tests are revealed.
引用
收藏
页码:425 / 432
页数:8
相关论文
共 50 条
  • [1] Effect of Heat-Treatment Conditions on the Microstructure and the Static Fracture Toughness of an α + β VT23 Titanium Alloy
    S. V. Gladkovskii
    V. E. Veselova
    D. I. Vichuzhanin
    M. Ch. Zichenkov
    S. V. Dubinskii
    N. I. Kovalev
    A. V. Kulemin
    I. E. Kovalev
    Russian Metallurgy (Metally), 2023, 2023 : 425 - 432
  • [2] A study of fracture of VT23 titanium alloy after hydrogen-heat treatment
    Vozdvizhenskii, VM
    Mamonov, AM
    Vozdvizhenskaya, MV
    Zasypkin, YV
    Pavlov, AO
    RUSSIAN METALLURGY, 1995, (06): : 98 - 102
  • [3] A Study of Modes of Hardening Heat Treatment of Titanium Alloy VT23
    O. V. Kondrat’eva
    S. Yu. Kondrat’ev
    O. V. Shvetsov
    Metal Science and Heat Treatment, 2019, 60 : 715 - 721
  • [4] A Study of Modes of Hardening Heat Treatment of Titanium Alloy VT23
    Kondrat'eva, O. V.
    Kondrat'ev, S. Yu.
    Shvetsov, O. V.
    METAL SCIENCE AND HEAT TREATMENT, 2019, 60 (11-12) : 715 - 721
  • [5] Effect of Shock and Vibration Loading on the Fracture Mechanisms of a VT23 Titanium Alloy
    Maruschak, P. O.
    Chausov, M. G.
    Konovalenko, I. V.
    Yasnii, O. P.
    Panin, S. V.
    Vlasov, I. V.
    STRENGTH OF MATERIALS, 2020, 52 (02) : 252 - 261
  • [6] Effect of Shock and Vibration Loading on the Fracture Mechanisms of a VT23 Titanium Alloy
    P. O. Maruschak
    M. G. Chausov
    I. V. Konovalenko
    O. P. Yasnii
    S. V. Panin
    I. V. Vlasov
    Strength of Materials, 2020, 52 : 252 - 261
  • [7] Study of fracture regularities in titanium base alloy type VT23 after heat-hydrogen treatment
    Vozdvizhenskij, V.M.
    Mamonov, A.M.
    Vozdvizhenskaya, M.V.
    Zasypkin, V.V.
    Pavlov, A.O.
    Izvestia Akademii nauk SSSR. Metally, 1995, (06): : 113 - 118
  • [8] INFLUENCE OF HEAT-TREATMENT ON THE FRACTURE OF THE (2-PHASE) TITANIUM-ALLOY VT-23
    SHISHKINA, MI
    TOMSINSKIY, VS
    RUSSIAN METALLURGY, 1978, (02): : 124 - 125
  • [9] EFFECT OF PRELIMINARY ANNEALING ON THE STRUCTURE AND PROPERTIES OF WELDED-JOINTS IN VT23 ALLOY IN THE CONDITION STRENGTHENED BY HEAT-TREATMENT
    LYASOTSKAYA, VS
    WELDING PRODUCTION, 1985, 32 (04): : 29 - 31
  • [10] Effect of Concentration-Time Hydrogenation Annealing Conditions on the Hydrogen Saturation of a VT23 Titanium Alloy
    Skvortsova, S. V.
    Shalin, A. V.
    Gvozdeva, O. N.
    Stepushin, A. S.
    Zhurbenko, A. S.
    RUSSIAN METALLURGY, 2024, 2024 (05): : 1196 - 1201