Quaternionic Gabor frame characterization and the density theorem

被引:1
|
作者
Zhang, Xiao-Li [1 ]
Li, Yun-Zhang [1 ]
机构
[1] Beijing Univ Technol, Fac Sci, Dept Math, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Frame; Quaternionic Gabor frame; Density theorem; BALIAN-LOW THEOREM; FOURIER-TRANSFORM; UNCERTAINTY PRINCIPLE; HYPERCOMPLEX; LOCALIZATION; MATRICES; IMAGES;
D O I
10.1007/s43037-023-00289-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of quaternionic Gabor systems has interested some mathematicians in recent years. From the literature, we found that most existing results on quaternionic Gabor frames focus on the case of the product of time-frequency shift parameters being equal to 1, and have a gap that the involved quaternionic Gabor systems are all incomplete according to the symmetric real scalar inner product. In this paper, we introduce quaternionic Zak transformation and a class of quaternionic Gabor systems. Under the condition that the products of time-frequency shift parameters are rational numbers, we characterize completeness and frame property of quaternionic Gabor systems in terms of Zak transformation matrices. From this, we derive the density theorem for quaternionic Gabor systems.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] A Balian–Low type theorem for Gabor Riesz sequences of arbitrary density
    Andrei Caragea
    Dae Gwan Lee
    Friedrich Philipp
    Felix Voigtlaender
    Mathematische Zeitschrift, 2023, 303
  • [22] The quaternionic Gauss–Lucas theorem
    R. Ghiloni
    A. Perotti
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 1679 - 1686
  • [23] ON GABOR EXPANSION THEOREM
    MIYAMOTO, K
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1960, 50 (09) : 856 - 858
  • [24] Quaternionic spherical harmonics and a sharp multiplier theorem on quaternionic spheres
    Ahrens, Julian
    Cowling, Michael G.
    Martini, Alessio
    Mueller, Detlef
    MATHEMATISCHE ZEITSCHRIFT, 2020, 294 (3-4) : 1659 - 1686
  • [25] Quaternionic spherical harmonics and a sharp multiplier theorem on quaternionic spheres
    Julian Ahrens
    Michael G. Cowling
    Alessio Martini
    Detlef Müller
    Mathematische Zeitschrift, 2020, 294 : 1659 - 1686
  • [26] Some Results on the Lattice Parameters of Quaternionic Gabor Frames
    Hartmann, Stefan
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (01) : 137 - 149
  • [27] Uncertainty Principle for Gabor Transform on the Quaternionic Heisenberg Group
    Faress, Moussa
    Fahlaoui, Said
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (10) : 1222 - 1237
  • [28] Some Results on the Lattice Parameters of Quaternionic Gabor Frames
    Stefan Hartmann
    Advances in Applied Clifford Algebras, 2016, 26 : 137 - 149
  • [29] A Balian-Low type theorem for Gabor Riesz sequences of arbitrary density
    Caragea, Andrei
    Lee, Dae Gwan
    Philipp, Friedrich
    Voigtlaender, Felix
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (02)
  • [30] Admissibility and frame homotopy for quaternionic frames
    Needham, Tom
    Shonkwiler, Clayton
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 645 : 237 - 255