Structural basis of metallo-β-lactamase resistance to taniborbactam

被引:6
|
作者
Drusin, Salvador I. [1 ]
Le Terrier, Christophe [2 ,3 ]
Poirel, Laurent [2 ,4 ]
Bonomo, Robert A. [5 ,6 ,7 ,8 ,9 ,10 ,11 ]
Vila, Alejandro J. [1 ,11 ,12 ]
Moreno, Diego M. [1 ,13 ]
机构
[1] Univ Nacl Rosario, Fac Ciencias Bioquim & Farmaceut, Rosario, Argentina
[2] Univ Fribourg, Fac Sci & Med, Emerging Antibiot Resistance, Med & Mol Microbiol, Fribourg, Switzerland
[3] Univ Hosp Geneva, Div Intens Care Unit, Geneva, Switzerland
[4] Swiss Natl Reference Ctr Emerging Antibiot Resista, Fribourg, Switzerland
[5] Louis Stokes Cleveland Dept Vet Affairs Med Ctr, Res Serv & GRECC, Cleveland, OH USA
[6] Univ Hosp Cleveland Med Ctr, Dept Med, Cleveland, OH USA
[7] Case Western Reserve Univ, Sch Med, Dept Pharmacol, Cleveland, OH USA
[8] Case Western Reserve Univ, Sch Med, Dept Mol Biol & Microbiol, Cleveland, OH USA
[9] Case Western Reserve Univ, Sch Med, Dept Biochem, Cleveland, OH USA
[10] Case Western Reserve Univ, Sch Med, Dept Prote & Bioinformat, Cleveland, OH USA
[11] CWRU Cleveland VAMC Ctr Antimicrobial Resistance &, Cleveland, OH 44106 USA
[12] Univ Nacl Rosario, Inst Biol Mol & Celular Rosario IBR, CONICET, Rosario, Argentina
[13] Univ Nacl Rosario, Inst Quim Rosario IQUIR, CONICET, Rosario, Argentina
基金
美国国家卫生研究院;
关键词
taniborbactam resistance; metallo-beta-lactamases; NDM-9; CARBAPENEM-RESISTANT; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURE; INHIBITORS; ACCURACY; NDM-9;
D O I
10.1128/aac.01168-23
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The design of inhibitors against metallo-beta-lactamases (MBLs), the largest family of carbapenemases, has been a strategic goal in designing novel antimicrobial therapies. In this regard, the development of bicyclic boronates, such as taniborbactam (TAN) and xeruborbactam, is a major achievement that may help in overcoming the threat of MBL-producing and carbapenem-resistant Gram-negative pathogens. Of concern, a recent report has shown that New Delhi MBL-9 (NDM-9) escapes the inhibitory action of TAN by a single amino acid substitution with respect to New Delhi MBL-1 (NDM-1), the most widely disseminated MBL. Here, we report a docking and computational analysis that identifies that "escape variants" against TAN can arise by disruption of the electrostatic interaction of negative charges in the active site loops of MBLs with the N-(2-aminoethyl)cyclohexylamine side chain of TAN. These changes result in non-productive binding modes of TAN that preclude reaction with the MBLs, a phenomenon that is not restricted to NDM-9. This analysis demonstrates that single amino acid substitutions in non-essential residues in MBL loops can unexpectedly elicit resistance to TAN.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Metallo-β-lactamase inhibitors: A continuing challenge for combating antibiotic resistance
    Kang, Su-Jin
    Kim, Do-Hee
    Lee, Bong-Jin
    BIOPHYSICAL CHEMISTRY, 2024, 309
  • [22] The metallo-β-lactamases strike back: emergence of taniborbactam escape variants
    Tamma, Pranita D.
    Munita, Jose M.
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2024, 68 (02)
  • [23] Structural Insights into the Subclass B3 Metallo-β-Lactamase SMB-1 and the Mode of Inhibition by the Common Metallo-β-Lactamase Inhibitor Mercaptoacetate
    Wachino, Jun-ichi
    Yamaguchi, Yoshihiro
    Mori, Shigetarou
    Kurosaki, Hiromasa
    Arakawa, Yoshichika
    Shibayama, Keigo
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2013, 57 (01) : 101 - 109
  • [24] Epidemiology of extended-spectrum β-lactamase/metallo-β-lactamase
    Migliavacca, R.
    Balzaretti, M.
    Nucleo, E.
    D'Andrea, M. M.
    Mugnaioli, C.
    Spalla, M.
    Giani, T.
    Rossolini, G. M.
    Pagani, L.
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2007, 29 : S90 - S90
  • [25] New Delhi Metallo-β-Lactamase: Structural Insights into β-Lactam Recognition and Inhibition
    King, Dustin T.
    Worrall, Liam J.
    Gruninger, Robert
    Strynadka, Natalie C. J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (28) : 11362 - 11365
  • [26] NOTA: a potent metallo-β-lactamase inhibitor
    Somboro, Anou M.
    Tiwari, Dileep
    Bester, Linda A.
    Parboosing, Raveen
    Chonco, Louis
    Kruger, Hendrick G.
    Arvidsson, Per I.
    Govender, Thavendran
    Naicker, Tricia
    Essack, Sabiha Y.
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2015, 70 (05) : 1594 - 1596
  • [27] Metallo-β-Lactamase Inhibitor Phosphonamidate Monoesters
    Palica, Katarzyna
    Voracova, Manuela
    Skagseth, Susann
    Rasmussen, Anna Andersson
    Allander, Lisa
    Hubert, Madlen
    Sandegren, Linus
    Leiros, Hanna-Kirstirep Schroder
    Andersson, Hanna
    Erdelyi, Mate
    ACS OMEGA, 2022, 7 (05): : 4550 - 4562
  • [28] Principles and current strategies targeting metallo-β-lactamase mediated antibacterial resistance
    Yan, Yu-Hang
    Li, Gen
    Li, Guo-Bo
    MEDICINAL RESEARCH REVIEWS, 2020, 40 (05) : 1558 - 1592
  • [29] New Delhi metallo-β-lactamase-1 in Enterobacteriaceae: emerging resistance
    Pillai, Dylan R.
    McGeer, Allison
    Low, Donald E.
    CANADIAN MEDICAL ASSOCIATION JOURNAL, 2011, 183 (01) : 59 - 64
  • [30] Metallo-β-lactamase: Inhibitors and reporter substrates
    Fast, Walter
    Sutton, Larry D.
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2013, 1834 (08): : 1648 - 1659