Eigenvalues of one-dimensional Hamiltonian operators with an eigenparameter in the boundary condition

被引:1
|
作者
Li, Kun [1 ]
Zheng, Jiajia [1 ]
Cai, Jinming [1 ]
Zheng, Zhaowen [2 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273100, Peoples R China
[2] Guangdong Polytech Normal Univ, Coll Math & Syst Sci, Guangzhou, Peoples R China
基金
中国博士后科学基金;
关键词
STURM-LIOUVILLE PROBLEMS; SPECTRAL PARAMETER; DIRAC SYSTEM; DEPENDENCE;
D O I
10.1063/5.0138229
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, one-dimensional Hamiltonian operators with spectral parameter-dependent boundary conditions are investigated. First, the eigenvalues of the problem under consideration are transformed into the eigenvalues of an operator in an appropriate Hilbert space. Then, some properties of the eigenvalues are given. Moreover, the continuity and differentiability of the eigenvalues of the problem are obtained, and the differential expressions of the eigenvalues concerning each parameter are also given. Finally, Green's function is also involved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] ONE-DIMENSIONAL COULOMB HAMILTONIAN
    GESZTESY, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (03): : 867 - 875
  • [22] OPTIMAL BOUNDS FOR RATIOS OF EIGENVALUES OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH DIRICHLET BOUNDARY-CONDITIONS AND POSITIVE POTENTIALS
    ASHBAUGH, MS
    BENGURIA, RD
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 124 (03) : 403 - 415
  • [23] Acoustic boundary condition for unsteady one-dimensional flow calculations
    Payri, F
    Desantes, JM
    Torregrosa, AJ
    JOURNAL OF SOUND AND VIBRATION, 1995, 188 (01) : 85 - 110
  • [24] Role of a phase factor in the boundary condition of a one-dimensional junction
    Furuhashi, Yoshiyuki
    Hirokawa, Masao
    Nakahara, Kazumitsu
    Shikano, Yutaka
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (35)
  • [25] Almost exact boundary condition for one-dimensional Schrodinger equations
    Pang, Gang
    Bian, Lei
    Tang, Shaoqiang
    PHYSICAL REVIEW E, 2012, 86 (06):
  • [26] A problem with dynamical boundary condition for a one-dimensional hyperbolic equation
    Beylin, A. B.
    Pulkina, L. S.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2020, 24 (03): : 407 - 423
  • [27] A One-Dimensional Wave Equation with White Noise Boundary Condition
    Jong Uhn Kim
    Applied Mathematics and Optimization, 2006, 54 : 237 - 261
  • [28] Is Dirichlet the physical boundary condition for the one-dimensional hydrogen atom?
    de Oliveira, Cesar R.
    PHYSICS LETTERS A, 2010, 374 (28) : 2805 - 2808
  • [29] A one-dimensional wave equation with white noise boundary condition
    Kim, Jong Uhn
    APPLIED MATHEMATICS AND OPTIMIZATION, 2006, 54 (02): : 237 - 261
  • [30] Dependence of Eigenvalues of Discontinuous Fourth-order Differential Operators with Eigenparameter Dependent Boundary Conditions
    Qin, Jianfang
    Li, Kun
    Zheng, Zhaowen
    Cai, Jinming
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2022, 29 (04) : 776 - 793