Eigenvalues of one-dimensional Hamiltonian operators with an eigenparameter in the boundary condition

被引:1
|
作者
Li, Kun [1 ]
Zheng, Jiajia [1 ]
Cai, Jinming [1 ]
Zheng, Zhaowen [2 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273100, Peoples R China
[2] Guangdong Polytech Normal Univ, Coll Math & Syst Sci, Guangzhou, Peoples R China
基金
中国博士后科学基金;
关键词
STURM-LIOUVILLE PROBLEMS; SPECTRAL PARAMETER; DIRAC SYSTEM; DEPENDENCE;
D O I
10.1063/5.0138229
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, one-dimensional Hamiltonian operators with spectral parameter-dependent boundary conditions are investigated. First, the eigenvalues of the problem under consideration are transformed into the eigenvalues of an operator in an appropriate Hilbert space. Then, some properties of the eigenvalues are given. Moreover, the continuity and differentiability of the eigenvalues of the problem are obtained, and the differential expressions of the eigenvalues concerning each parameter are also given. Finally, Green's function is also involved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A Weak Gordon Type Condition for Absence of Eigenvalues of One-dimensional Schrodinger Operators
    Seifert, Christian
    Vogt, Hendrik
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 78 (03) : 383 - 405
  • [2] On the one-dimensional reggeon model: eigenvalues of the Hamiltonian and the propagator
    M. A. Braun
    E. M. Kuzminskii
    A. V. Kozhedub
    A. M. Puchkov
    M. I. Vyazovsky
    The European Physical Journal C, 2019, 79
  • [3] On the one-dimensional reggeon model: eigenvalues of the Hamiltonian and the propagator
    Braun, M. A.
    Kuzminskii, E. M.
    Kozhedub, A., V
    Puchkov, A. M.
    Vyazovsky, M., I
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (08):
  • [4] A Weak Gordon Type Condition for Absence of Eigenvalues of One-dimensional Schrödinger Operators
    Christian Seifert
    Hendrik Vogt
    Integral Equations and Operator Theory, 2014, 78 : 383 - 405
  • [5] Comparison theorems for eigenvalues of one-dimensional Schrodinger operators
    Huang, MJ
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2003, 43 (03): : 465 - 474
  • [6] A note on eigenvalues estimates for one-dimensional diffusion operators
    Bonnefont, Michel
    Joulin, Alderic
    BERNOULLI, 2022, 28 (01) : 64 - 86
  • [7] Discrete and embedded eigenvalues for one-dimensional Schrodinger operators
    Remling, Christian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (01) : 275 - 287
  • [8] SPECTRAL ANALYSIS OF SINGULAR HAMILTONIAN SYSTEMS WITH AN EIGENPARAMETER IN THE BOUNDARY CONDITION
    Allahverdiev, Bilender P.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [9] Eigenvectors from eigenvalues: the case of one-dimensional Schrodinger operators
    Gesztesy, Fritz
    Zinchenko, Maxim
    ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (01)
  • [10] Discrete and Embedded Eigenvalues for One-Dimensional Schrödinger Operators
    Christian Remling
    Communications in Mathematical Physics, 2007, 271 : 275 - 287