Dually Sulphophilic Chromium Boride Nanocatalyst Boosting Sulfur Conversion Kinetics Toward High-Performance Lithium-Sulfur Batteries

被引:12
|
作者
Li, Hongyang [1 ]
Chen, Guxian [1 ]
Zhang, Kailong [2 ]
Wang, Liangbiao [3 ]
Li, Gaoran [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, MIIT Key Lab Adv Display Mat & Devices, Nanjing 210094, Jiangsu, Peoples R China
[2] Huaiyin Inst Technol, Natl & Local Joint Engn Res Ctr Mineral Salt Deep, Sch Chem Engn, Key Palygorskite Sci & Appl Technol Jiangsu, Huaian 223003, Jiangsu, Peoples R China
[3] Jiangsu Univ Technol, Sch Chem & Chem Engn, Changzhou 213001, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
chromium boride; dual sulphophilicity; electrocatalysis; lithium-sulfur batteries; LI2S;
D O I
10.1002/advs.202303830
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The sluggish kinetics of sulfur conversions have long been hindering the implementation of fast and efficient sulfur electrochemistry in lithium-sulfur (Li-S) batteries. In this regard, herein the unique chromium boride (CrB) is developed via a well-confined mild-temperature thermal reaction to serve as an advanced sulfur electrocatalyst. Its interstitial-alloy nature features excellent conductivity, while the nano-lamination architecture affords abundant active sites for host-guest interactions. More importantly, the CrB nanocatalyst demonstrates a dual sulphophilicity with simultaneous CrS and BS bondage for establishing strong interactions with the intermediate polysulfides. As a result, significant stabilization and promotion of sulfur redox behavior can be achieved, enabling an excellent Li-S cell cyclability with a minimum capacity fading rate of 0.0176% per cycle over 2000 cycles and a favorable rate capability up to 7 C. Additionally, a high areal capacity of 5.2 mAh cm-2, and decent cycling and rate performances are still attainable under high sulfur loading and low electrolyte dosage. This work offers a facile approach and instructive insights into metal boride sulfur electrocatalyst, holding a good promise for pursuing high-efficiency sulfur electrochemistry and high-performance Li-S batteries. Chromium boride is developed for the first time as sulfur electrocatalyst, which imposes a unique dual-sulphophilic mechanism via p-d and p-p hybridizations with the polysulfide intermediates. As a result, fast and durable sulfur electrochemistry is realized, contributing to excellent cyclability, rate capability, and high-loading performances of Li-S batteries.image
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Ultrafine Iron Boride as a Highly Efficient Nanocatalyst Expedites Sulfur Redox Electrochemistry for High-Performance Lithium-Sulfur Batteries
    Chen, Guxian
    Li, Hongyang
    Wang, Yuqi
    Ding, Yingrui
    Qian, Pengsen
    Zhang, Kailong
    Zeng, Haibo
    Li, Gaoran
    BATTERIES & SUPERCAPS, 2024, 7 (08)
  • [2] Boosting sulfur catalytic kinetics by defect engineering of vanadium disulfide for high-performance lithium-sulfur batteries
    Liu, Guo
    Zeng, Qi
    Fan, Ziye
    Tian, Shuhao
    Li, Xijuan
    Lv, Xueliang
    Zhang, Wenjian
    Tao, Kun
    Xie, Erqing
    Zhang, Zhenxing
    Chemical Engineering Journal, 2022, 448
  • [3] Boosting sulfur catalytic kinetics by defect engineering of vanadium disulfide for high-performance lithium-sulfur batteries
    Liu, Guo
    Zeng, Qi
    Fan, Ziye
    Tian, Shuhao
    Li, Xijuan
    Lv, Xueliang
    Zhang, Wenjian
    Tao, Kun
    Xie, Erqing
    Zhang, Zhenxing
    CHEMICAL ENGINEERING JOURNAL, 2022, 448
  • [4] Boosting High-Performance in Lithium-Sulfur Batteries via Dilute Electrolyte
    Wu, Feixiang
    Chu, Fulu
    Ferrero, Guillermo A.
    Sevilla, Marta
    Fuertes, Antonio B.
    Borodin, Oleg
    Yu, Yan
    Yushin, Gleb
    NANO LETTERS, 2020, 20 (07) : 5391 - 5399
  • [5] Advances in High-Performance Lithium-Sulfur Batteries
    Liu Shuai
    Yao Lu
    Zhang Qin
    Li Lu-Lu
    Hu Nan-Tao
    Wei Liang-Ming
    Wei Hao
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (12) : 2339 - 2358
  • [6] Catalytic engineering for polysulfide conversion in high-performance lithium-sulfur batteries
    Du, Shibo
    Yu, Yiyao
    Liu, Xianbin
    Lu, Dunqi
    Yue, Xiaohan
    Liu, Ting
    Yin, Yanhong
    Wu, Ziping
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 186 : 110 - 131
  • [7] Strong intermolecular polarization to boost polysulfide conversion kinetics for high-performance lithium-sulfur batteries
    Hu, Yin
    Hu, Anjun
    Wang, Jianwei
    Niu, Xiaobin
    Zhou, Mingjie
    Chen, Wei
    Lei, Tianyu
    Huang, Jianwen
    Li, Yaoyao
    Xue, Lanxin
    Fan, Yuxin
    Wang, Xianfu
    Xiong, Jie
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (15) : 9771 - 9779
  • [8] Bimetallic Metal-Organic Framework Catalyst to Accelerate Sulfur Conversion Kinetics for High-Performance Lithium-Sulfur Batteries
    Lu, Han
    Luo, Zichun
    Wang, Xingbo
    Guo, Jiaxiang
    Yan, Xiang
    Yang, Lin
    Wang, Jiayi
    Liu, Wen
    Chen, Zhongwei
    INORGANIC CHEMISTRY, 2025, 64 (08) : 4052 - 4061
  • [9] Toward high-sulfur-content, high-performance lithium-sulfur batteries:Review of materials and technologies
    Fulai Zhao
    Jinhong Xue
    Wei Shao
    Hui Yu
    Wei Huang
    Jian Xiao
    Journal of Energy Chemistry, 2023, 80 (05) : 625 - 657
  • [10] Toward high-sulfur-content, high-performance lithium-sulfur batteries: Review of materials and technologies
    Zhao, Fulai
    Xue, Jinhong
    Shao, Wei
    Yu, Hui
    Huang, Wei
    Xiao, Jian
    JOURNAL OF ENERGY CHEMISTRY, 2023, 80 : 625 - 657