Spatiotemporal features of the soil moisture across Northwest China using remote sensing data, reanalysis data, and global hydrological model (vol 11, 1164895, 2023)

被引:0
|
作者
Wang, Meijun [1 ,2 ]
Yin, Gang [1 ,3 ]
Mao, Min [1 ,2 ]
Zhang, Hao [4 ]
Zhang, Hua [1 ]
Hu, Zengyun [2 ,4 ,5 ]
Chen, Xi [2 ,4 ,5 ]
机构
[1] Xinjiang Univ, Coll Geog & Remote Sensing Sci, Urumqi, Xinjiang, Peoples R China
[2] Chinese Acad Sci, Res Ctr Ecol & Environm Cent Asia, Urumqi, Xinjiang, Peoples R China
[3] Xinjiang Univ, Xinjiang Key Lab Oasis Ecol, Urumqi, Xinjiang, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
[5] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi, Xinjiang, Peoples R China
关键词
soil moisture; microwave remote sensing data; lobal hydrological model; reanalysis data; spatiotemporal characteristics;
D O I
10.3389/fenvs.2023.1205591
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
引用
收藏
页数:2
相关论文
共 23 条
  • [21] Soil moisture estimation using Bayesian Maximum Entropy algorithm from FY3-B, MODIS and ASTER GDEM remote-sensing data in a maize region of HeBei province, China
    Wang, Chunmei
    Xie, Qiuxia
    Gu, Xingfa
    Yu, Tao
    Meng, Qingyan
    Zhou, Xiang
    Han, Leran
    Zhan, Yulin
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (18) : 7018 - 7041
  • [22] Remote sensing observatory validation of surface soil moisture using Advanced Microwave Scanning Radiometer E, Common Land Model, and ground based data: Case study in SMEX03 Little River Region, Georgia, US
    Choi, Minha
    Jacobs, Jennifer M.
    Bosch, David D.
    [J]. WATER RESOURCES RESEARCH, 2008, 44 (08)
  • [23] Detecting Spatiotemporal Features and Rationalities of Urban Expansions within the Guangdong-Hong Kong-Macau Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images and Socioeconomic Data (vol 11, 2215, 2019)
    Yang, Chao
    Li, Qingquan
    Zhao, Tianhong
    Liu, Huizeng
    Gao, Wenxiu
    Shi, Tiezhu
    Guan, Minglei
    Wu, Guofeng
    [J]. REMOTE SENSING, 2022, 14 (16)