A new stochastic diffusion model for influence maximization in social networks

被引:9
|
作者
Rezvanian, Alireza [1 ]
Vahidipour, S. Mehdi [2 ]
Meybodi, Mohammad Reza [3 ]
机构
[1] Univ Sci & Culture, Dept Comp Engn, Tehran, Iran
[2] Univ Kashan, Fac Elect & Comp Engn, Comp Engn Dept, Kashan, Iran
[3] Amirkabir Univ Technol, Tehran Polytech, Comp Engn Dept, Tehran, Iran
关键词
INFORMATION DIFFUSION; ALGORITHMS; SYSTEMS; GRAPHS;
D O I
10.1038/s41598-023-33010-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most current studies on information diffusion in online social networks focus on the deterministic aspects of social networks. However, the behavioral parameters of online social networks are uncertain, unpredictable, and time-varying. Thus, deterministic graphs for modeling information diffusion in online social networks are too restrictive to solve most real network problems, such as influence maximization. Recently, stochastic graphs have been proposed as a graph model for social network applications where the weights associated with links in the stochastic graph are random variables. In this paper, we first propose a diffusion model based on a stochastic graph, in which influence probabilities associated with its links are unknown random variables. Then we develop an approach using the set of learning automata residing in the proposed diffusion model to estimate the influence probabilities by sampling from the links of the stochastic graph. Numerical simulations conducted on real and artificial stochastic networks demonstrate the effectiveness of the proposed stochastic diffusion model for influence maximization.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Structural Influence Maximization in Social Networks
    Jing, Dong
    Liu, Ting
    2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 1088 - 1095
  • [32] Influence Maximization in Online Social Networks
    Aslay, Cigdem
    Lakshmanan, Laks V. S.
    Lu, Wei
    Xiao, Xiaokui
    WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2018, : 775 - 776
  • [33] On Budgeted Influence Maximization in Social Networks
    Huy Nguyen
    Zheng, Rong
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2013, 31 (06) : 1084 - 1094
  • [34] Efficient Influence Maximization in Social Networks
    Chen, Wei
    Wang, Yajun
    Yang, Siyu
    KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2009, : 199 - 207
  • [35] Competitive influence maximization in social networks
    Harathi, Shishir
    Kempe, David
    Salek, Mahyar
    INTERNET AND NETWORK ECONOMICS, PROCEEDINGS, 2007, 4858 : 306 - 311
  • [36] Influence maximization on social networks: A study
    Singh S.S.
    Singh K.
    Kumar A.
    Biswas B.
    Recent Advances in Computer Science and Communications, 2021, 14 (01) : 13 - 29
  • [37] Targeted Influence Maximization in Social Networks
    Song, Chonggang
    Hsu, Wynne
    Lee, Mong Li
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 1683 - 1692
  • [38] Influence maximization with deactivation in social networks
    Taninmis, Kubra
    Aras, Necati
    Altinel, I. K.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 278 (01) : 105 - 119
  • [39] Matching influence maximization in social networks
    Rao, Guoyao
    Wang, Yongcai
    Chen, Wenping
    Li, Deying
    Wu, Weili
    THEORETICAL COMPUTER SCIENCE, 2021, 857 : 71 - 86
  • [40] Influence maximization for large social networks
    Yue, Feifei
    Tu, Zhibing
    Feng, Shengzhong
    INFORMATION SCIENCE AND MANAGEMENT ENGINEERING, VOLS 1-3, 2014, 46 : 1823 - 1830