An iterative algorithm for low-rank tensor completion problem with sparse noise and missing values

被引:1
|
作者
Chen, Jianheng [1 ]
Huang, Wen [1 ,2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
block coordinate descent; low-rank tensor completion; missing values; sparse noise; transformed multi-rank manifold; IMAGE; RECONSTRUCTION; FACTORIZATION; OPTIMIZATION;
D O I
10.1002/nla.2544
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Robust low-rank tensor completion plays an important role in multidimensional data analysis against different degradations, such as sparse noise, and missing entries, and has a variety of applications in image processing and computer vision. In this paper, an optimization model for low-rank tensor completion problems is proposed and a block coordinate descent algorithm is developed to solve this model. It is shown that for one of the subproblems, the closed-form solution exists and for the other, a Riemannian conjugate gradient algorithm is used. In particular, when all elements are known, that is, no missing values, the block coordinate descent is simplified in the sense that both subproblems have closed-form solutions. The convergence analysis is established without requiring the latter subproblem to be solved exactly. Numerical experiments illustrate that the proposed model with the algorithm is feasible and effective.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Robust Low-Rank Tensor Ring Completion
    Huang, Huyan
    Liu, Yipeng
    Long, Zhen
    Zhu, Ce
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 : 1117 - 1126
  • [22] Low-rank tensor completion by Riemannian optimization
    Daniel Kressner
    Michael Steinlechner
    Bart Vandereycken
    BIT Numerical Mathematics, 2014, 54 : 447 - 468
  • [23] Optimal Low-Rank Tensor Tree Completion
    Li, Zihan
    Zhu, Ce
    Long, Zhen
    Liu, Yipeng
    2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2023,
  • [24] A dual framework for low-rank tensor completion
    Nimishakavi, Madhav
    Jawanpuria, Pratik
    Mishra, Bamdev
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [25] Low-Rank and Sparse Matrix Completion for Recommendation
    Zhao, Zhi-Lin
    Huang, Ling
    Wang, Chang-Dong
    Lai, Jian-Huang
    Yu, Philip S.
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 2017, 10638 : 3 - 13
  • [26] An Iterative Coordinate Descent Algorithm to Compute Sparse Low-Rank Approximations
    Rusu, Cristian
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 249 - 253
  • [27] On the equivalence between low-rank matrix completion and tensor rank
    Derksen, Harm
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 645 - 667
  • [28] Noisy Tensor Completion via Low-Rank Tensor Ring
    Qiu, Yuning
    Zhou, Guoxu
    Zhao, Qibin
    Xie, Shengli
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) : 1127 - 1141
  • [29] A Weighted Tensor Factorization Method for Low-rank Tensor Completion
    Cheng, Miaomiao
    Jing, Liping
    Ng, Michael K.
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 30 - 38
  • [30] Boosted Sparse and Low-Rank Tensor Regression
    He, Lifang
    Chen, Kun
    Xu, Wanwan
    Zhou, Jiayu
    Wang, Fei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31