Fractional robust data-driven control of nonlinear MEMS gyroscope

被引:2
|
作者
Rahmani, Mehran [1 ]
Redkar, Sangram [2 ]
机构
[1] Arizona State Univ, Ira Fulton Sch Engn, Polytech Sch, Mesa, AZ 85212 USA
[2] Arizona State Univ, Ira Fulton Sch Engn, Dept Polytech Sch, Mesa, AZ 85212 USA
基金
美国国家科学基金会;
关键词
MEMS gyroscope; Koopman theory; DMD; Fractional sliding mode control; Fractional PID control; Compound control; SLIDING MODE CONTROL;
D O I
10.1007/s11071-023-08912-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This research proposes a new fractional robust data-driven control method to control a nonlinear dynamic micro-electromechanical (MEMS) gyroscope model. The Koopman theory is used to linearize the nonlinear dynamic model of MEMS gyroscope, and the Koopman operator is obtained by using the dynamic mode decomposition (DMD) method. However, external disturbances constantly affect the MEMS gyroscope. To compensate for these perturbations, a fractional sliding mode controller (FOSMC) is applied. The FOSMC has several advantages, including high trajectory tracking performance and robustness. However, one of the drawbacks of FOSMC is generating high control inputs. To overcome this limitation, the researchers proposed a compound controller design that applies fractional proportional integral derivative (FOPID) to reduce the control efforts. The simulation results showed that the proposed compound Koopman-FOSMC and FOPID (Koopman-CFOPIDSMC) outperformed two other controllers, including FOSMC and Koopman-FOSMC, in terms of performance. Therefore, this research proposes an effective approach to control the nonlinear dynamic model of MEMS gyroscope.
引用
收藏
页码:19901 / 19910
页数:10
相关论文
共 50 条
  • [21] Data-Driven Robust Control Using Reinforcement Learning
    Ngo, Phuong D.
    Tejedor, Miguel
    Godtliebsen, Fred
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [22] Data-Driven Robust Regulation of Nonlinear Systems With Mismatched Disturbances
    Yang, Xiong
    He, Haibo
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 1284 - 1291
  • [23] Robust analysis for data-driven model predictive control
    Jianwang, Hong
    Ramirez-Mendoza, Ricardo A.
    Xiaojun, Tang
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2021, 9 (01) : 393 - 404
  • [24] Data-Driven Robust Control of Unknown MIMO Nonlinear System Subject to Input Saturations and Disturbances
    Wang, Li
    Gong, Huajun
    Liu, Chunsheng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [25] Designing Experiments for Data-Driven Control of Nonlinear Systems
    De Persis, Claudio
    Tesi, Pietro
    IFAC PAPERSONLINE, 2021, 54 (09): : 285 - 290
  • [26] A data-driven indirect method for nonlinear optimal control
    Tang, Gao
    Hauser, Kris
    ASTRODYNAMICS, 2019, 3 (04) : 345 - 359
  • [27] Data-driven learning and control of nonlinear system dynamics
    Becerra-Mora, Yeyson A.
    Acosta, Jose angel
    NONLINEAR DYNAMICS, 2024,
  • [28] A data-driven indirect method for nonlinear optimal control
    Gao Tang
    Kris Hauser
    Astrodynamics, 2019, 3 : 345 - 359
  • [29] A Convex Data-Driven Approach for Nonlinear Control Synthesis
    Choi, Hyungjin
    Vaidya, Umesh
    Chen, Yongxin
    MATHEMATICS, 2021, 9 (19)
  • [30] Nonlinear Data-Driven Control for Stabilizing Periodic Orbits
    Cetinkaya, Ahmet
    Kishida, Masako
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4326 - 4331