Effects of degradation level and vegetation recovery age on soil erodibility of alpine grasslands on the Qinghai-Tibetan Plateau

被引:2
|
作者
Li, Yuanze [1 ]
Lu, Bingbing [1 ]
Zhou, Huakun [2 ,3 ]
Zhang, Yue [1 ]
Zhao, Ziwen [1 ]
Chen, Wenjing [1 ]
Wu, Yang [1 ]
Guo, Ziqi [1 ]
Jiang, Jun [1 ]
Xue, Sha [1 ,4 ,5 ]
机构
[1] Northwest A&F Univ, Inst Soil & Water Conservat, State Key Lab Soil Eros & Dryland Farming Loess Pl, Xinong Rd 26, Yangling 712100, Shaanxi, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Plateau Biol, Qinghai Prov Key Lab Restorat Ecol Cold Reg, Xining 810000, Peoples R China
[3] Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810000, Peoples R China
[4] Chinese Acad Sci & Minist Water Resources, Inst Soil & Water Conservat, Yangling, Peoples R China
[5] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Degradation levels; Restoration ages; Alpine grasslands; Erodibility; PARTICLE-SIZE DISTRIBUTION; LOESS PLATEAU; LAND-USE; AGGREGATE STABILITY; RESTORATION; EROSION; MEADOW; CARBON; MANAGEMENT; NITROGEN;
D O I
10.1007/s11368-023-03593-w
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
PurposeThe study of soil erodibility is an important step in understanding the mechanism of soil erosion, and is crucial to the sustainable development of grassland ecosystems. However, few studies have investigated the potential effects of different degradation levels and restoration ages on soil erodibility on the Qinghai-Tibetan Plateau where many alpine grasslands suffering from severe degradation have been restored for different years.Materials and methodsIn order to quantify the impact of alpine grassland degradation and restoration on soil erodibility, we selected different degradation levels (non-degraded, lightly degraded, moderately degraded, and heavily degraded) and restored ages (3, 8, 13, and 19 years) on the Qinghai-Tibet Plateau. Soil sampling was carried out at different depths, and the microaggregate fractal dimension (D-v), multifractal theory (D-m) and erodibility factor (K) were measured and calculated to quantify the soil changes in erodibility.Results and discussionWith the degree of degradation increased, the K value in the surface soil changed little, but the D-v value increased significantly. On the grassland recovery sequence, the K value showed a trend of increasing first and then decreasing, and the K factor and D-m of 19-y restored grasslands was reverted to the same level as that of the non-degraded site. Furthermore, the K value and D-v value increased with the increase in soil depth. Our result also shows that root biomass, microorganisms, and soil physicochemical properties including SOC, TN, TP, PSD, and MSD were all significantly correlated with K value.ConclusionsOur research proves that restoration of alpine grassland on the Qinghai-Tibet Plateau helps reduce soil erodibility, and reveals that plant roots, soil physical and chemical properties, and microorganisms play an important role in reducing soil erodibility, further deepening the influence on soil erodibility. This understanding can provide a certain theoretical basis for the sustainable development of grassland ecosystems.
引用
收藏
页码:294 / 306
页数:13
相关论文
共 50 条
  • [21] Grazing enhances plant photosynthetic capacity by altering soil nitrogen in alpine grasslands on the Qinghai-Tibetan plateau
    Shen, Hao
    Dong, Shikui
    Li, Shuai
    Xiao, Jiannan
    Han, Yuhui
    Yang, Mingyue
    Zhang, Jing
    Gao, Xiaoxia
    Xu, Yudan
    Li, Yu
    Zhi, Yangliu
    Liu, Shiliang
    Dong, Quanming
    Zhou, Huakun
    Yeomans, Jane C.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2019, 280 : 161 - 168
  • [22] Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau
    ZHANG YongQiang1
    2 Institute of Geographic Sciences and Natural Resources Research
    3 Research Center for Agricultural Resources
    Science China Earth Sciences, 2007, (01) : 113 - 120
  • [23] Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau
    YongQiang Zhang
    YanHong Tang
    Jie Jiang
    YongHai Yang
    Science in China Series D: Earth Sciences, 2007, 50 : 113 - 120
  • [24] Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau
    Zhang YongQinag
    Tang YanHong
    Jiang Jie
    Yang YongHai
    SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2007, 50 (01): : 113 - 120
  • [25] The construction of Grassland Degradation Index for Alpine Meadow in Qinghai-Tibetan Plateau
    Wen, L.
    Dong, S. K.
    Zhu, L.
    Li, X. Y.
    Shi, J. J.
    Wang, Y. L.
    Ma, Y. S.
    INTERNATIONAL CONFERENCE ON ECOLOGICAL INFORMATICS AND ECOSYSTEM CONSERVATION (ISEIS 2010), 2010, 2 : 1966 - 1969
  • [26] Alpine meadow degradation enhances the temperature sensitivity of soil carbon decomposition on the Qinghai-Tibetan plateau
    Pei, Junmin
    Yan, Dong
    Li, Jinquan
    Qiong, La
    Yang, Yuanwu
    Fang, Changming
    Wu, Jihua
    APPLIED SOIL ECOLOGY, 2022, 170
  • [27] Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau
    Zhang, Wenjuan
    Xue, Xian
    Peng, Fei
    You, Quangang
    Hao, Aihua
    GLOBAL ECOLOGY AND CONSERVATION, 2019, 20
  • [28] CHANGES OF PLANT COMMUNITIES AND SOIL PROPERTIES DUE TO DEGRADATION OF ALPINE WETLANDS ON THE QINGHAI-TIBETAN PLATEAU
    Gao, Y. H.
    Schumann, M.
    Zeng, X. Y.
    Chen, H.
    JOURNAL OF ENVIRONMENTAL PROTECTION AND ECOLOGY, 2011, 12 (02): : 788 - 798
  • [29] Responses of soil insect communities to alpine wetland degradation on the eastern Qinghai-Tibetan Plateau, China
    Wei, Xue
    Wu, Pengfei
    EUROPEAN JOURNAL OF SOIL BIOLOGY, 2021, 103
  • [30] Lateral flow between bald and vegetation patches induces the degradation of alpine meadow in Qinghai-Tibetan Plateau
    Jiang, Xiao-Jin
    Zhu, Xiai
    Yuan, Zi-Qiang
    Li, Xiao Gang
    Liu, Wenjie
    Zakari, Sissou
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 751