Effects of degradation level and vegetation recovery age on soil erodibility of alpine grasslands on the Qinghai-Tibetan Plateau

被引:2
|
作者
Li, Yuanze [1 ]
Lu, Bingbing [1 ]
Zhou, Huakun [2 ,3 ]
Zhang, Yue [1 ]
Zhao, Ziwen [1 ]
Chen, Wenjing [1 ]
Wu, Yang [1 ]
Guo, Ziqi [1 ]
Jiang, Jun [1 ]
Xue, Sha [1 ,4 ,5 ]
机构
[1] Northwest A&F Univ, Inst Soil & Water Conservat, State Key Lab Soil Eros & Dryland Farming Loess Pl, Xinong Rd 26, Yangling 712100, Shaanxi, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Plateau Biol, Qinghai Prov Key Lab Restorat Ecol Cold Reg, Xining 810000, Peoples R China
[3] Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810000, Peoples R China
[4] Chinese Acad Sci & Minist Water Resources, Inst Soil & Water Conservat, Yangling, Peoples R China
[5] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Degradation levels; Restoration ages; Alpine grasslands; Erodibility; PARTICLE-SIZE DISTRIBUTION; LOESS PLATEAU; LAND-USE; AGGREGATE STABILITY; RESTORATION; EROSION; MEADOW; CARBON; MANAGEMENT; NITROGEN;
D O I
10.1007/s11368-023-03593-w
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
PurposeThe study of soil erodibility is an important step in understanding the mechanism of soil erosion, and is crucial to the sustainable development of grassland ecosystems. However, few studies have investigated the potential effects of different degradation levels and restoration ages on soil erodibility on the Qinghai-Tibetan Plateau where many alpine grasslands suffering from severe degradation have been restored for different years.Materials and methodsIn order to quantify the impact of alpine grassland degradation and restoration on soil erodibility, we selected different degradation levels (non-degraded, lightly degraded, moderately degraded, and heavily degraded) and restored ages (3, 8, 13, and 19 years) on the Qinghai-Tibet Plateau. Soil sampling was carried out at different depths, and the microaggregate fractal dimension (D-v), multifractal theory (D-m) and erodibility factor (K) were measured and calculated to quantify the soil changes in erodibility.Results and discussionWith the degree of degradation increased, the K value in the surface soil changed little, but the D-v value increased significantly. On the grassland recovery sequence, the K value showed a trend of increasing first and then decreasing, and the K factor and D-m of 19-y restored grasslands was reverted to the same level as that of the non-degraded site. Furthermore, the K value and D-v value increased with the increase in soil depth. Our result also shows that root biomass, microorganisms, and soil physicochemical properties including SOC, TN, TP, PSD, and MSD were all significantly correlated with K value.ConclusionsOur research proves that restoration of alpine grassland on the Qinghai-Tibet Plateau helps reduce soil erodibility, and reveals that plant roots, soil physical and chemical properties, and microorganisms play an important role in reducing soil erodibility, further deepening the influence on soil erodibility. This understanding can provide a certain theoretical basis for the sustainable development of grassland ecosystems.
引用
收藏
页码:294 / 306
页数:13
相关论文
共 50 条
  • [1] Effects of degradation level and vegetation recovery age on soil erodibility of alpine grasslands on the Qinghai−Tibetan Plateau
    Yuanze Li
    Bingbing Lu
    Huakun Zhou
    Yue Zhang
    Ziwen Zhao
    Wenjing Chen
    Yang Wu
    Ziqi Guo
    Jun Jiang
    Sha Xue
    Journal of Soils and Sediments, 2024, 24 : 294 - 306
  • [2] Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau
    Wang, Kun
    Zhang, Li
    Qiu, Yubao
    Ji, Lei
    Tian, Feng
    Wang, Cuizhen
    Wang, Zhiyong
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2015, 8 (01) : 56 - 73
  • [3] Effects of gravel on soil and vegetation properties of alpine grassland on the Qinghai-Tibetan plateau
    Qin, Yu
    Yi, Shuhua
    Chen, Jianjun
    Ren, Shilong
    Ding, Yongjian
    ECOLOGICAL ENGINEERING, 2015, 74 : 351 - 355
  • [4] Assessment of the vulnerability of alpine grasslands on the Qinghai-Tibetan Plateau
    Li, Meng
    Zhang, Xianzhou
    He, Yongtao
    Niu, Ben
    Wu, Jianshuang
    PEERJ, 2020, 8
  • [5] Attribution analyses of changes in alpine grasslands on the Qinghai-Tibetan Plateau
    Chen, Huai
    Ju, Peijun
    Zhang, Jiang
    Wang, Yuanyun
    Zhu, Qiu'an
    Yan, Liang
    Kang, Xiaoming
    He, Yixin
    Zeng, Yuan
    Hao, Yanbin
    Wang, Yanfen
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (22): : 2406 - 2418
  • [6] The effects of fencing on carbon stocks in the degraded alpine grasslands of the Qinghai-Tibetan Plateau
    Li, Yuanyuan
    Dong, Shikui
    Wen, Lu
    Wang, Xuexia
    Wu, Yu
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2013, 128 : 393 - 399
  • [7] Soil Nutrient and Vegetation Diversity Patterns of Alpine Wetlands on the Qinghai-Tibetan Plateau
    Ma, Muyuan
    Zhu, Yaojun
    Wei, Yuanyun
    Zhao, Nana
    SUSTAINABILITY, 2021, 13 (11)
  • [8] Soil seed banks in degraded and revegetated grasslands in the alpine region of the Qinghai-Tibetan Plateau
    Li, Yuan-yuan
    Dong, Shi-kui
    Wen, Lu
    Wang, Xue-xia
    Wu, Yu
    ECOLOGICAL ENGINEERING, 2012, 49 : 77 - 83
  • [9] Pikas burrowing activity promotes vegetation species diversity in alpine grasslands on the Qinghai-Tibetan Plateau
    Qin, Yu
    Huang, Bo
    Zhang, Wei
    Yu, Yanhong
    Yi, Shuhua
    Sun, Yi
    GLOBAL ECOLOGY AND CONSERVATION, 2021, 31
  • [10] The response of soil macroinvertebrates to alpine meadow degradation in the Qinghai-Tibetan Plateau, China
    Wu, Pengfei
    Zhang, Hongzhi
    Wang, Yong
    APPLIED SOIL ECOLOGY, 2015, 90 : 60 - 67