Hydrothermal synthesis of the CdS nanorods on electrochemically deposited Fe2O3 thin film for improving photoelectrochemical performance

被引:3
|
作者
Sang, Pankyu [1 ]
Kim, Jung Hyeun [1 ]
机构
[1] Univ Seoul, Dept Chem Engn, 163 Seoulsiripdaero, Seoul 02504, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Photoelectrochemical; Fe2O3/CdS; Photoanode; Hydrothermal; Electrodeposition; FACILE FABRICATION; NANOWIRE ARRAYS; WATER-OXIDATION; ALPHA-FE2O3; HETEROJUNCTION; PHOTOANODE; PHOTOCATALYSTS; DEGRADATION;
D O I
10.1016/j.jece.2023.110197
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, a CdS nanorod layer is hydrothermally synthesized on an electrochemically deposited Fe2O3 thin film substrate. These two components are hierarchically stacked to form a type-II heterojunction for enhancing photoelectrochemical performance. The Fe2O3/CdS composite photoanode system shows enhanced photocurrent density (1724 mu A center dot cm(-2) at 1.23 V-RHE), incident photon-to-current conversion efficiency (23.3% at 390 nm), applied bias photon-to-current conversion efficiency (0.48% at 0.68 V-RHE), electron lifetime, reduced charge transfer resistance, and good stability in an alkaline solution. It also has enhanced optical absorbance compared to the Fe2O3 and CdS only samples. The optical band gap of the composite Fe2O3/CdS system is narrowed by adding the Fe2O3 component to the CdS nanorod layer. Therefore, the underlying Fe2O3 layer plays a significant role in transferring charges through the CdS nanorod layer in this photoelectrochemical cell system.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting
    Kumar, Praveen
    Sharma, Poonam
    Shrivastav, Rohit
    Doss, Sahab
    Satsangi, Vibha R.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (04) : 2777 - 2784
  • [22] A valve-assisted snapshot approach to understand the hydrothermal synthesis of α-Fe2O3 nanorods
    Almeida, Trevor P.
    Fay, Michael W.
    Zhu, Yanqiu
    Brown, Paul D.
    CRYSTENGCOMM, 2010, 12 (06): : 1700 - 1704
  • [23] Hydrothermal synthesis of monodisperse α-Fe2O3 nanocubes
    Liu, J.
    Wang, J.
    Li, Y.
    Jia, P.
    Lu, F.
    Chen, K.
    MATERIALS RESEARCH INNOVATIONS, 2015, 19 : 371 - 375
  • [24] Hydrothermal Synthesis of Monodisperse α-Fe2O3 Nanoparticles
    Wang, Hong
    Yan, Jie
    Lou, Hong
    Feng, Xue
    APPLICATION OF CHEMICAL ENGINEERING, PTS 1-3, 2011, 236-238 : 1814 - +
  • [25] α-Fe2O3 Hollow Spheres: Hydrothermal Synthesis and Phenol Adsorption Performance
    Yuan Xiao-Wei
    Yang Qian
    Liu Qi
    Yu Li-Li
    Chen Qun
    Xu Zheng
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2010, 26 (02) : 285 - 292
  • [26] Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of α-Fe2O3 nanorods
    Tang, B
    Wang, GL
    Zhuo, LH
    Ge, JC
    Cui, LJ
    INORGANIC CHEMISTRY, 2006, 45 (13) : 5196 - 5200
  • [27] Hollow α-Fe2O3 nanofibres for solar water oxidation: improving the photoelectrochemical performance by formation of α-Fe2O3/ITO-composite photoanodes
    Einert, M.
    Ostermann, R.
    Weller, T.
    Zellmer, S.
    Garnweitner, G.
    Smarsly, B. M.
    Marschall, R.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (47) : 18444 - 18456
  • [28] Improving photoelectrochemical performance by building Fe2O3 heterostructure on TiO2 nanorod arrays
    Cao, Chunlan
    Hu, Chenguo
    Shen, Weidong
    Wang, Shuxia
    Song, Sihong
    Wang, Mingjun
    MATERIALS RESEARCH BULLETIN, 2015, 70 : 155 - 162
  • [29] Investigation of electrochemical performance of the biosynthesized α-Fe2O3 nanorods
    Bashir, A. K. H.
    Mayedwa, N.
    Kaviyarasu, K.
    Razanamahandry, L. C.
    Matinise, N.
    Bharuth-Ram, K.
    Tchokonte, M. B. Tchoula
    Ezema, F., I
    Maaza, M.
    SURFACES AND INTERFACES, 2019, 17
  • [30] Synthesis of novel α-Fe2O3 nanorods without surfactant and its electrochemical performance
    Bazrafshan, Hamed
    Tesieh, Zahra Alipour
    Dabimia, Saeideh
    Touba, Razieh Shajareh
    Manghabati, Hamed
    Nasernejad, Bahram
    POWDER TECHNOLOGY, 2017, 308 : 266 - 272