Natural Grasp Intention Recognition Based on Gaze in Human-Robot Interaction

被引:11
|
作者
Yang, Bo [1 ]
Huang, Jian [1 ]
Chen, Xinxing [2 ,3 ]
Li, Xiaolong [1 ]
Hasegawa, Yasuhisa [4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automation, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
[2] Shenzhen Key Lab Biomimet Robot & Intelligent Syst, Shenzhen 518055, Peoples R China
[3] Rehabil Robot Univ, Southern Univ Sci & Technol, Guangdong Prov Key Lab Human Augmentat, Shenzhen 518055, Peoples R China
[4] Nagoya Univ, Dept Micronano Mech Sci & Engn, Furo cho Chikusa ku, Nagoya 4648603, Japan
基金
中国国家自然科学基金;
关键词
Grasp intention recognition; gaze movement modeling; human-robot interaction; feature extraction; EYE-MOVEMENTS; PREDICTION; VISION;
D O I
10.1109/JBHI.2023.3238406
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective: While neuroscience research has established a link between vision and intention, studies on gaze data features for intention recognition are absent. The majority of existing gaze-based intention recognition approaches are based on deliberate long-term fixation and suffer from insufficient accuracy. In order to address the lack of features and insufficient accuracy in previous studies, the primary objective of this study is to suppress noise from human gaze data and extract useful features for recognizing grasp intention. Methods: We conduct gaze movement evaluation experiments to investigate the characteristics of gaze motion. The target-attracted gaze movement model (TAGMM) is proposed as a quantitative description of gaze movement based on the findings. A Kalman filter (KF) is used to reduce the noise in the gaze data based on TAGMM. We conduct gaze-based natural grasp intention recognition evaluation experiments to collect the subject's gaze data. Four types of features describing gaze point dispersion (f(var)), gaze point movement (f(gm)), head movement (f(hm)), and distance from the gaze points to objects (f(dj)) are then proposed to recognize the subject's grasp intentions. With the proposed features, we perform intention recognition experiments, employing various classifiers, and the results are compared with different methods. Results: The statistical analysis reveals that the proposed features differ significantly across intentions, offering the possibility of employing these features to recognize grasp intentions. We demonstrated the intention recognition performance utilizing the TAGMM and the proposed features in within-subject and cross-subject experiments. The results indicate that the proposed method can recognize the intention with accuracy improvements of 44.26% (within-subject) and 30.67% (cross-subject) over the fixation-based method. The proposed method also consumes less time (34.87 ms) to recognize the intention than the fixation-based method (about 1 s). Conclusion: This work introduces a novel TAGMM for modeling gaze movement and a variety of practical features for recognizing grasp intentions. Experiments confirm the effectiveness of our approach. Significance: The proposed TAGMM is capable of modeling gaze movements and can be utilized to process gaze data, and the proposed features can reveal the user's intentions. These results contribute to the development of gaze-based human-robot interaction.
引用
收藏
页码:2059 / 2070
页数:12
相关论文
共 50 条
  • [41] Scene-Dependent Intention Recognition for Task Communication with Reduced Human-Robot Interaction
    Duncan, Kester
    Sarkar, Sudeep
    Alqasemi, Redwan
    Dubey, Rajiv
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT III, 2015, 8927 : 730 - 745
  • [42] The ANEMONE: Theoretical Foundations for UX Evaluation of Action and Intention Recognition in Human-Robot Interaction
    Lindblom, Jessica
    Alenljung, Beatrice
    SENSORS, 2020, 20 (15) : 1 - 49
  • [43] Intention Recognition in Human Robot Interaction Based on Eye Tracking
    Cubero, Carlos Gomez
    Rehm, Matthias
    HUMAN-COMPUTER INTERACTION, INTERACT 2021, PT III, 2021, 12934 : 428 - 437
  • [44] Engagement Intention Estimation in Multiparty Human-Robot Interaction
    Zhang, Zhijie
    Zheng, Jianmin
    Thalmann, Nadia Magnenat
    2021 30TH IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), 2021, : 117 - 122
  • [45] cGAN Based Facial Expression Recognition for Human-Robot Interaction
    Deng, Jia
    Pang, Gaoyang
    Zhang, Zhiyu
    Pang, Zhibo
    Yang, Huayong
    Yang, Geng
    IEEE ACCESS, 2019, 7 : 9848 - 9859
  • [46] Gesture recognition based on context awareness for human-robot interaction
    Hong, Seok-Ju
    Setiawan, Nurul Arif
    Kim, Song-Gook
    Lee, Chil-Woo
    ADVANCES IN ARTIFICIAL REALITY AND TELE-EXISTENCE, PROCEEDINGS, 2006, 4282 : 1 - +
  • [47] Gesture recognition based on arm tracking for human-robot interaction
    Sigalas, Markos
    Baltzakis, Haris
    Trahanias, Panos
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, : 5424 - 5429
  • [48] Expressing reactive emotion based on multimodal emotion recognition for natural conversation in human-robot interaction*
    Li, Yuanchao
    Ishi, Carlos Toshinori
    Inoue, Koji
    Nakamura, Shizuka
    Kawahara, Tatsuya
    ADVANCED ROBOTICS, 2019, 33 (20) : 1030 - 1041
  • [49] Classification of Visual Interest based on Gaze and Facial Features for Human-robot Interaction
    Sorensen, Andreas Risskov
    Palinko, Oskar
    Krueger, Norbert
    HUCAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 2: HUCAPP, 2021, : 198 - 204
  • [50] Online Robot Teaching With Natural Human-Robot Interaction
    Du, Guanglong
    Chen, Mingxuan
    Liu, Caibing
    Zhang, Bo
    Zhang, Ping
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (12) : 9571 - 9581