Systems of Sequential ψ1-Hilfer and ψ2-Caputo Fractional Differential Equations with Fractional Integro-Differential Nonlocal Boundary Conditions

被引:1
|
作者
Sitho, Surang [1 ]
Ntouyas, Sotiris K. K. [2 ]
Sudprasert, Chayapat [3 ]
Tariboon, Jessada [3 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Coll Ind Technol, Dept Social & Appl Sci, Bangkok 10800, Thailand
[2] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[3] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Intelligent & Nonlinear Dynam Innovat Res Ctr, Dept Math, Bangkok 10800, Thailand
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 03期
关键词
psi-Hilfer fractional derivative; psi-Caputo fractional derivative; boundary value problems; nonlocal boundary conditions; existence; uniqueness; fixed point;
D O I
10.3390/sym15030680
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce and study a new class of coupled and uncoupled systems, consisting of mixed-type ?(1)-Hilfer and ?(2)-Caputo fractional differential equations supplemented with asymmetric and symmetric integro-differential nonlocal boundary conditions (systems (2) and (13), respectively). As far as we know, this combination of ?(1)-Hilfer and ?(2)-Caputo fractional derivatives in coupled systems is new in the literature. The uniqueness result is achieved via the Banach contraction mapping principle, while the existence result is established by applying the Leray-Schauder alternative. Numerical examples illustrating the obtained results are also presented.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Existence of solutions of Caputo fractional integro-differential equations
    Kazemi, Manochehr
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2025, 13 (02): : 568 - 577
  • [42] A Study of Coupled Systems of ψ-Hilfer Type Sequential Fractional Differential Equations with Integro-Multipoint Boundary Conditions
    Samadi, Ayub
    Nuchpong, Cholticha
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [43] Existence and Uniqueness of Solutions for Nonlinear Fractional Integro-Differential Equations with Nonlocal Boundary Conditions
    Mardanov, M. J.
    Sharifov, Y. A.
    Aliyev, H. N.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (02): : 726 - 735
  • [44] New results on nonlocal functional integro-differential equations via Hilfer fractional derivative
    Subashini, R.
    Jothimani, K.
    Nisar, Kottakkaran Sooppy
    Ravichandran, C.
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 2891 - 2899
  • [45] Systems of Hilfer-Hadamard Fractional Differential Equations with Nonlocal Coupled Boundary Conditions
    Tudorache, Alexandru
    Luca, Rodica
    FRACTAL AND FRACTIONAL, 2023, 7 (11)
  • [46] On ψ-Hilfer Fractional Integro-Differential Equations with Non-Instantaneous Impulsive Conditions
    Arul, Ramasamy
    Karthikeyan, Panjayan
    Karthikeyan, Kulandhaivel
    Geetha, Palanisamy
    Alruwaily, Ymnah
    Almaghamsi, Lamya
    El-hady, El-sayed
    FRACTAL AND FRACTIONAL, 2022, 6 (12)
  • [47] Investigation on integro-differential equations with fractional boundary conditions by Atangana-Baleanu-Caputo derivative
    Harisa, Samy A.
    Faried, Nashat
    Vijayaraj, V.
    Ravichandran, C.
    Morsy, Ahmed
    PLOS ONE, 2024, 19 (05):
  • [48] Boundary value problems for Caputo fractional differential equations with nonlocal and fractional integral boundary conditions
    Choukri Derbazi
    Hadda Hammouche
    Arabian Journal of Mathematics, 2020, 9 : 531 - 544
  • [49] Controllability of impulsive nonlinear ψ-Hilfer fractional integro-differential equations
    Ahmed, A. M. Sayed
    AL-Nahhas, Mahmoud A.
    Omar, Othman A. M.
    Chalishajar, Dimplekumar N.
    Ahmed, Hamdy M.
    RESULTS IN CONTROL AND OPTIMIZATION, 2024, 16
  • [50] Semilinear Neutral Fractional Stochastic Integro-Differential Equations with Nonlocal Conditions
    Ahmed, Hamdy M.
    JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (02) : 667 - 680