Carbohydrate is a renewable, sustainable, hydrophilic, and biodegradable natural product, which is widely used in the field of adsorption. In this study, a glucose-based covalent organic polymer (COP) coated silica was fabricated by facile solvent knitting reaction between tetrabenzylglucose and silica-phenyl with anhydrous aluminum trichloride as catalyst, forming a core-shell stationary phase (donated as SiO2 @COPBn-glu) for high performance liquid chromatography. The prepared SiO2 @COPBn-glu was charac-terized by scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectrometry, solid-state 13 C nuclear magnetic resonance spectrometry, X-ray photoelectron spectroscopy, and N 2 adsorption-desorption experiments. Owing to the coexistence of benzene units and alkyl, hy-droxyl and ether groups in the skeleton of COPBn-glu shell, the developed chromatographic packing ex-hibited reversed-phase/hydrophilic interaction mixed-mode with multiple retention mechanisms, such as hydrophobic, pi-pi, hydrogen bonding, and electron donor-acceptor interactions. The results revealed that the SiO2 @COPBn-glu column demonstrated excellent selectivity and retention behavior for both hydrophilic and hydrophobic compounds with good repeatability and stability. Meanwhile, the chromatographic per-formance of the prepared SiO2 @COPBn-glu column was compared with a C 18 column to assess the role of the coating COPBn-glu shell. Therefore, the development of the SiO2 @COPBn-glu stationary phase expands the potential application of COPs in separation field.(c) 2023 Elsevier B.V. All rights reserved.