Learning Data-Driven Propagation Mechanism for Graph Neural Network

被引:0
|
作者
Wu, Yue [1 ]
Hu, Xidao [1 ]
Fan, Xiaolong [2 ]
Ma, Wenping [3 ]
Gao, Qiuyue [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
[2] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
[3] Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
graph neural network; propagation mechanism; data-driven method; deep learning; APPROXIMATE;
D O I
10.3390/electronics12010046
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A graph is a relational data structure suitable for representing non-Euclidean structured data. In recent years, graph neural networks (GNN) and their subsequent variants, which utilize deep neural networks to complete graph analysis and representation, have shown excellent performance in various application fields. However, the propagation mechanism of existing methods relies on hand-designed GNN layer connection architecture, which is prone to information redundancy and over-smoothing problems. To alleviate this problem, we propose a data-driven propagation mechanism to adaptively propagate information between layers. Specifically, we construct a bi-level optimization objective and use the gradient descent algorithm to learn the forward propagation architecture, which improves the efficiency of learning different layer combinations in multilayer networks. The experimental results of the model on seven benchmark datasets demonstrate the effectiveness of the proposed method. Furthermore, combining this data-driven propagation mechanism with models, such as Graph Attention Networks, can consistently improve the performance of these models.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Data-Driven Template Discovery Using Graph Convolutional Neural Networks
    Joaristi, Mikel
    Purohit, Sumit
    Deshmukh, Rahul
    Chin, George
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 2534 - 2538
  • [22] Research on data-driven method for circuit breaker condition assessment based on back propagation neural network
    Geng, Sujie
    Wang, Xiuli
    COMPUTERS & ELECTRICAL ENGINEERING, 2020, 86 (86)
  • [23] Rumor detection based on propagation graph neural network with attention mechanism
    Wu, Zhiyuan
    Pi, Dechang
    Chen, Junfu
    Xie, Meng
    Cao, Jianjun
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 158
  • [24] Learning Data-Driven Drug-Target-Disease Interaction via Neural Tensor Network
    Chen, Huiyuan
    Li, Jing
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3452 - 3458
  • [25] Data-driven inverse modelling through neural network (deep learning) and computational heat transfer
    Tamaddon-Jahromi, Hamid Reza
    Chakshu, Neeraj Kavan
    Sazonov, Igor
    Evans, Llion M.
    Thomas, Hywel
    Nithiarasu, Perumal
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 369
  • [26] Data-Driven Designs of Fault Detection Systems via Neural Network-Aided Learning
    Chen, Hongtian
    Chai, Zheng
    Dogru, Oguzhan
    Jiang, Bin
    Huang, Biao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) : 5694 - 5705
  • [27] DATA-DRIVEN LOW-RANK NEURAL NETWORK COMPRESSION
    Papadimitriou, Dimitris
    Jain, Swayambhoo
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3547 - 3551
  • [28] Data-Driven Simulation of Pedestrian Movement with Artificial Neural Network
    Wang, Weili
    Rong, Jiayu
    Fan, Qinqin
    Zhang, Jingjing
    Han, Xin
    Cong, Beihua
    JOURNAL OF ADVANCED TRANSPORTATION, 2021, 2021
  • [29] A data-driven neural network approach to simulate pedestrian movement
    Song, Xiao
    Han, Daolin
    Sun, Jinghan
    Zhang, Zenghui
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 509 : 827 - 844
  • [30] Adaptive data-driven subsampling for efficient neural network inference
    Machidon, Alina L.
    Pejovic, Veljko
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (6-7) : 5163 - 5171