The causal α-exponential and the solution of fractional linear time-invariant systems

被引:1
|
作者
Bengochea, G. [1 ,5 ]
Ortigueira, M. [2 ,3 ]
Verde-Star, L. [4 ]
机构
[1] Univ Autonoma Ciudad Mexico, Acad Matemat, Mexico City, Mexico
[2] NOVA Univ Lisbon, UNINOVA, Lisbon, Portugal
[3] NOVA Univ Lisbon, NOVA Sch Sci & Technol, Dept Elect Engn, Lisbon, Portugal
[4] Univ Autonoma Metropolitana, Dept Matemat, Mexico City, Mexico
[5] Prol San Isidro 151, Mexico City 09790, Mexico
关键词
Fractional derivative; fractional linear systems; alpha-exponential function; impulse response; step response; NUMERICAL COMPUTATION;
D O I
10.1080/00207721.2024.2321369
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Closed-form expressions for the impulse and step responses of commensurable linear time-invariant systems are deduced and exemplified. The algorithm is based on obtaining the solution in terms of the alpha-exponential monomials that generate a vector space containing the solutions of such systems. Several examples are considered, together with the numerical aspects involved in calculating the related series, which show the accuracy and effectiveness of the approach.
引用
下载
收藏
页码:1790 / 1806
页数:17
相关论文
共 50 条
  • [21] Non-Exponential Stabilization of Linear Time-Invariant Systems by Linear Time-Varying Controllers
    Inoue, Masaki
    Wada, Teruyo
    Asai, Toru
    Ikeda, Masao
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 4090 - 4095
  • [22] Identification of linear time-invariant systems
    Larin V.B.
    Apostolyuk A.S.
    International Applied Mechanics, 2011, 47 (6) : 754 - 760
  • [23] DESIGN OF OPTIMAL TIME-INVARIANT COMPENSATORS FOR LINEAR STOCHASTIC TIME-INVARIANT SYSTEMS
    MENDEL, JM
    FEATHER, J
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1975, 20 (05) : 653 - 657
  • [24] INVARIANT DESCRIPTION OF LINEAR, TIME-INVARIANT CONTROLLABLE SYSTEMS
    POPOV, VM
    SIAM JOURNAL ON CONTROL, 1972, 10 (02): : 252 - &
  • [25] SOLUTION TO THE POSITIVE REAL CONTROL PROBLEM FOR LINEAR TIME-INVARIANT SYSTEMS
    SUN, WQ
    KHARGONEKAR, PP
    SHIM, DS
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (10) : 2034 - 2046
  • [26] ERROR ANALYSIS OF THE ORTHOGONAL SERIES SOLUTION OF LINEAR TIME-INVARIANT SYSTEMS
    MARSZALEK, W
    KEKKERIS, GT
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1989, 20 (11) : 2351 - 2353
  • [27] ERROR ANALYSIS OF THE CHEBYSHEV SERIES SOLUTION OF LINEAR TIME-INVARIANT SYSTEMS
    CHEN, WL
    CHEN, CS
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1987, 18 (05) : 955 - 963
  • [28] Mixed Order Fractional Observers for Minimal Realizations of Linear Time-Invariant Systems
    Duarte-Mermoud, Manuel A.
    Gallegos, Javier A.
    Aguila-Camacho, Norelys
    Castro-Linares, Rafael
    ALGORITHMS, 2018, 11 (09)
  • [29] Analytic solution of homogeneous time-invariant fractional IVP
    Imad Jaradat
    Marwan Alquran
    Mohammad Al-Dolat
    Advances in Difference Equations, 2018
  • [30] Analytic solution of homogeneous time-invariant fractional IVP
    Jaradat, Imad
    Alquran, Marwan
    Al-Dolat, Mohammad
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,