Weak limits of fractional Sobolev homeomorphisms are almost injective

被引:1
|
作者
Schikorra, Armin [1 ]
Scott, James M. [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
injectivity; fractional Sobolev spaces; degree theory;
D O I
10.4064/sm201218-20-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of R-n be an open set and f(k) is an element of W-s,W-p(Omega; R-n) be a sequence of homeomorphisms weakly converging to f is an element of W-s,W-p(Omega; R-n). It is known that if s = 1 and p > n - 1 then f is injective almost everywhere in the domain and the target. In this note we extend such results to the case s is an element of(0, 1) and sp > n - 1. This in particular applies to C-s-Holder maps.
引用
收藏
页码:241 / 260
页数:20
相关论文
共 50 条
  • [1] Injectivity almost everywhere for weak limits of Sobolev homeomorphisms
    Bouchala, Ondrej
    Hencl, Stanislav
    Molchanova, Anastasia
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)
  • [2] DIFFERENTIABILITY ALMOST EVERYWHERE OF WEAK LIMITS OF BI-SOBOLEV HOMEOMORPHISMS
    Doležalová, Anna
    Molchanova, Anastasia
    [J]. arXiv, 2023,
  • [3] Jacobian of weak limits of Sobolev homeomorphisms
    Hencl, Stanislav
    Onninen, Jani
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2018, 11 (01) : 65 - 73
  • [4] Limits of Sobolev homeomorphisms
    Iwaniec, Tadeusz
    Onninen, Jani
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (02) : 473 - 505
  • [5] INVARIANT-MEASURES FOR HOMEOMORPHISMS WITH ALMOST WEAK SPECIFICATION
    DATEYAMA, M
    [J]. LECTURE NOTES IN MATHEMATICS, 1983, 1021 : 93 - 96
  • [6] DIFFEOMORPHIC APPROXIMATION OF CONTINUOUS ALMOST EVERYWHERE INJECTIVE SOBOLEV DEFORMATIONS IN THE PLANE
    Hencl, Stanislav
    Mora-Corral, Carlos
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2015, 66 (04): : 1055 - 1062
  • [7] Jacobians of Sobolev homeomorphisms
    Hencl, Stanislav
    Maly, Jan
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (1-2) : 233 - 242
  • [8] Jacobians of Sobolev homeomorphisms
    Stanislav Hencl
    Jan Malý
    [J]. Calculus of Variations and Partial Differential Equations, 2010, 38 : 233 - 242
  • [9] ANISOTROPIC SOBOLEV HOMEOMORPHISMS
    Di Gironimo, Patrizia
    D'Onofrio, Luigi
    Sbordone, Carlo
    Schiattarella, Roberta
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (02) : 593 - 602
  • [10] ON ALMOST REGULAR HOMEOMORPHISMS
    KAUL, SK
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (01): : 1 - &