Jacobians of Sobolev homeomorphisms

被引:32
|
作者
Hencl, Stanislav [1 ]
Maly, Jan [1 ,2 ]
机构
[1] Charles Univ Prague, Dept Math Anal, Prague 18600 8, Czech Republic
[2] Univ JE Purkyne, Dept Math, Usti Nad Labem 40096, Czech Republic
关键词
Sobolev mapping; Homeomorphism; Jacobian; Orientation;
D O I
10.1007/s00526-009-0284-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R(n) be a domain. We show that each homeomorphism f in the Sobolev space W(loc)(1,1) (Omega, R(n)) satisfies either J(f) >= 0 a.e or J(f) <= 0 a.e. if n = 2 or n = 3. For n > 3 we prove the same conclusion under the stronger assumption that f is an element of W(loc)(1,s) (Omega, R(n)) for some s > [n/2] (or in the setting of Lorentz spaces).
引用
收藏
页码:233 / 242
页数:10
相关论文
共 50 条
  • [1] Jacobians of Sobolev homeomorphisms
    Stanislav Hencl
    Jan Malý
    Calculus of Variations and Partial Differential Equations, 2010, 38 : 233 - 242
  • [2] ANISOTROPIC SOBOLEV HOMEOMORPHISMS
    Di Gironimo, Patrizia
    D'Onofrio, Luigi
    Sbordone, Carlo
    Schiattarella, Roberta
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (02) : 593 - 602
  • [3] Limits of Sobolev homeomorphisms
    Iwaniec, Tadeusz
    Onninen, Jani
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (02) : 473 - 505
  • [4] Diffeomorphic Approximation of Sobolev Homeomorphisms
    Iwaniec, Tadeusz
    Kovalev, Leonid V.
    Onninen, Jani
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 201 (03) : 1047 - 1067
  • [5] Critical points for Sobolev homeomorphisms
    Dipartimento di Matematica e Applicazioni R. Caccioppoli Università, Via Cintia, 80126 Napoli, Italy
    Att Aca Naz Lincei Cl Sci Fis Mat Nat Rend Lincei Mat Appl, 2 (207-222):
  • [6] Critical points for Sobolev homeomorphisms
    Sbordone, Carlo
    Schiattarella, Roberta
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (02) : 207 - 222
  • [7] Diffeomorphic Approximation of Sobolev Homeomorphisms
    Tadeusz Iwaniec
    Leonid V. Kovalev
    Jani Onninen
    Archive for Rational Mechanics and Analysis, 2011, 201 : 1047 - 1067
  • [8] APPROXIMATION BY PIECEWISE AFFINE HOMEOMORPHISMS OF SOBOLEV HOMEOMORPHISMS THAT ARE SMOOTH OUTSIDE A POINT
    Mora-Corral, Carlos
    HOUSTON JOURNAL OF MATHEMATICS, 2009, 35 (02): : 515 - 539
  • [9] Diffeomorphic approximation of planar Sobolev homeomorphisms in Orlicz Sobolev spaces
    Campbell, Daniel
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (01) : 125 - 205
  • [10] Sobolev Homeomorphisms and Brennan’s Conjecture
    V. Gol’dshtein
    A. Ukhlov
    Computational Methods and Function Theory, 2014, 14 : 247 - 256