IoT Fog Computing Optimization Method Based on Improved Convolutional Neural Network

被引:1
|
作者
Jing, Bing [1 ]
Xue, Huimin [1 ]
机构
[1] Shanxi Vocat & Tech Coll Finance & Trade, Dept Internet Things Technol, Taiyuan 030031, Peoples R China
关键词
Internet of Things; Computational modeling; Edge computing; Task analysis; Approximation algorithms; Processor scheduling; Markov processes; MDP; CNN; value function; IoT; fog computing; SYSTEM;
D O I
10.1109/ACCESS.2023.3348133
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid development of communication technology has promoted the development of the Internet of Things technology. It has resulted in a scarcity of computing resources for the Internet of Things devices, and limited the further development of the Internet of Things. In order to improve the utilization efficiency of the system resources for the Internet of Things devices and promote the further development of the Internet of Things, the continuous Markov decision process model is constructed. The value function approximation algorithm of the convolutional neural network is used to solve the problem. Continuous Markov decision process model is an excellent single-user decision process model, but not optimal for multi-user systems. Using convolutional neural network to solve the value function of continuous Markov decision process model, so that it can be applied to multi-user system. The results show that the average algorithm has growth rates of 0.48 and 0.84, respectively, in comparison to the other two algorithms. The average arrival rate has the least effect on the average delay of the value function approximation algorithm and the greatest influence on its power consumption. With the average arrival rate, the average delay of the algorithm increased by 0.25S and the power consumption by 0.27W. The effectiveness of the value function approximation algorithm based on convolutional neural network surpasses that of the multi-user multi-task offloading algorithm and the queue-aware algorithm, thus applying continuous Markov decision process models to multi-user systems. The study combines the continuous Markov decision process model with the resource decision of IOT devices, resulting in optimized resource scheduling decisions and improved utilization efficiency of IOT devices.
引用
收藏
页码:2398 / 2408
页数:11
相关论文
共 50 条
  • [21] Improving mobile mass monitoring in the IoT environment based on Fog computing using an improved forest optimization algorithm
    Motedayen, Tahere
    Yaghoobi, Mahdi
    Kheirabadi, Maryam
    JOURNAL OF CONTROL AND DECISION, 2024, 11 (01) : 36 - 49
  • [22] Flamingo-Optimization-Based Deep Convolutional Neural Network for IoT-Based Arrhythmia Classification
    Kumar, Ashwani
    Kumar, Mohit
    Mahapatra, Rajendra Prasad
    Bhattacharya, Pronaya
    Le, Thi-Thu-Huong
    Verma, Sahil
    Kavita
    Mohiuddin, Khalid
    SENSORS, 2023, 23 (09)
  • [23] Optimization method of fuel-reloading pattern for PWR based on the improved convolutional neural network and genetic algorithm
    Wan, Chenghui
    Lei, Kaihui
    Li, Yisong
    ANNALS OF NUCLEAR ENERGY, 2022, 171
  • [24] An improved SSD method for infrared target detection based on convolutional neural network
    Liu, Gang
    Cao, Zixuan
    Liu, Sen
    Song, Bin
    Liu, Zhonghua
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2022, 22 (04) : 1393 - 1408
  • [25] An Improved Convolutional Neural Network-Based Scene Image Recognition Method
    Wang, Pinhe
    Qiao, Jianzhong
    Liu, Nannan
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [26] Fire Detection Method Based on Improved Convolutional Neural Network with Random Inactivation
    Wang, Yuanbin
    Li, Yuanyuan
    Wu, Huaying
    Duan, Yu
    IAENG International Journal of Computer Science, 2022, 49 (04)
  • [27] A Rub-Impact Recognition Method Based on Improved Convolutional Neural Network
    Yang, Weibo
    Li, Jing
    Peng, Wei
    Deng, Aidong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 63 (01): : 283 - 299
  • [28] An Improved Image Classification Method Considering Rotation Based on Convolutional Neural Network
    Qu, Jingyi
    BIG DATA COMPUTING AND COMMUNICATIONS, (BIGCOM 2016), 2016, 9784 : 421 - 429
  • [29] Facial Expression Recognition Method Based on Improved VGG Convolutional Neural Network
    Cheng, Shuo
    Zhou, Guohui
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (07)
  • [30] An Improved Crop Disease Identification Method Based on Lightweight Convolutional Neural Network
    Wang, Tingzhong
    Xu, Honghao
    Hai, Yudong
    Cui, Yutian
    Chen, Ziyuan
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2022, 2022