Urban Water Supply Forecasting Based on CNN-LSTM-AM Spatiotemporal Deep Learning Model

被引:5
|
作者
Zhao, Yaxin [1 ]
Xu, Yuebing [1 ]
Ye, Jiadong [1 ]
Zhang, Xiaowu [1 ]
Long, Zuqiang [1 ]
机构
[1] Hengyang Normal Univ, Coll Phys & Elect Engn, Hengyang 421002, Peoples R China
关键词
Attention mechanism; Bayesian optimization; convolutional neural network; long short-term memory network; urban water supply forecasting;
D O I
10.1109/ACCESS.2023.3345029
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate and efficient forecasting of urban water supply is of great significance for urban water supply management. In this paper, a spatiotemporal deep learning model that integrates convolutional neural network (CNN), long short-term memory (LSTM), and attention mechanism (AM) is proposed for predicting the urban daily water supply. First, a one-dimensional CNN is used to identify the potential pattern structure in the water supply system and automatically extract the spatial features of the water supply data. Second, the feature vector output from the CNN is constructed into time series form and used as input to the LSTM network, and the parameters of the LSTM network are searched and optimized using the Bayesian algorithm. Then, the AM is introduced into the LSTM network, and the weighted sum is obtained by assigning the weights to the hidden layers of the LSTM network. Finally, the constructed CNN-LSTM-AM model captures the spatiotemporal information of the water supply data and makes an accurate prediction. Results show that the proposed CNN-LSTM-AM model reduces the mean absolute error, mean square error, and root mean square error values for two different sets of water supply data compared with the traditional LSTM, CNN-LSTM, and LSTM-AM models. The model has high forecasting accuracy and robustness, which are attributed to the excellent spatiotemporal feature extraction.
引用
收藏
页码:144204 / 144212
页数:9
相关论文
共 50 条
  • [41] Spam Filtering of Mobile SMS Using CNN-LSTM Based Deep Learning Model
    Hossain, Syed Md Minhaz
    Sumon, Jayed Akbar
    Sen, Anik
    Alam, Md Iftaker
    Kamal, Khaleque Md Aashiq
    Alqahtani, Hamed
    Sarker, Iqbal H.
    HYBRID INTELLIGENT SYSTEMS, HIS 2021, 2022, 420 : 106 - 116
  • [42] Power Load Forecasting Based on LSTM Deep Learning Algorithm
    Wu, Dalei
    Liang, Shuhua
    Chen, Changji
    Chen, Yupei
    Wang, Pishi
    Long, Zhiyuan
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2024, 31 (06): : 2156 - 2160
  • [43] Carbon trading price forecasting based on parameter optimization VMD and deep network CNN-LSTM model
    Ling, Meijun
    Cao, Guangxi
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2024, 11 (01)
  • [44] A spatiotemporal deep learning model ST-LSTM-SA for hourly rainfall forecasting using radar echo images
    Liu, Jie
    Xu, Lei
    Chen, Nengcheng
    JOURNAL OF HYDROLOGY, 2022, 609
  • [45] Deep Learning With Spatiotemporal Attention-Based LSTM for Industrial Soft Sensor Model Development
    Yuan, Xiaofeng
    Li, Lin
    Shardt, Yuri A. W.
    Wang, Yalin
    Yang, Chunhua
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (05) : 4404 - 4414
  • [46] A Deep Learning Model to Predict Student Learning Outcomes in LMS Using CNN and LSTM
    Aljaloud, Abdulaziz Salamah
    Uliyan, Diaa Mohammed
    Alkhalil, Adel
    Abd Elrhman, Magdy
    Alogali, Azizah Fhad Mohammed
    Altameemi, Yaser Mohammed
    Altamimi, Mohammed
    Kwan, Paul
    IEEE ACCESS, 2022, 10 : 85255 - 85265
  • [47] Hybrid Deep Learning Approach Based on LSTM and CNN for Malware Detection
    Thakur, Preeti
    Kansal, Vineet
    Rishiwal, Vinay
    WIRELESS PERSONAL COMMUNICATIONS, 2024, 136 (03) : 1879 - 1901
  • [48] Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model
    Liu, Yongqi
    Qin, Hui
    Zhang, Zhendong
    Pei, Shaoqian
    Jiang, Zhiqiang
    Feng, Zhongkai
    Zhou, Jianzhong
    APPLIED ENERGY, 2020, 260
  • [49] Short-Term Load Forecasting Based on CNN and LSTM Deep Neural Networks
    Agga, First Ali
    Abbou, Second Ahmed
    El Houm, Yassine
    Labbadi, Moussa
    IFAC PAPERSONLINE, 2022, 55 (12): : 777 - 781
  • [50] Research on optimization of improved short-term load composite forecasting model based on AM-CNN-Bi-LSTM
    Zhao, Xueyuan
    Ying, Xiaoyu
    Ge, Jian
    Xu, Tingting
    Qian, Fanyue
    Tan, Yang
    Dai, Xujun
    Gao, Weijun
    AIP ADVANCES, 2024, 14 (05)