Developing clinically interpretable machine learning algorithms for pressure injury safety surveillance with explainable AI

被引:0
|
作者
Alderden, Jenny [1 ]
Johnny, Jace [2 ]
Wilson, Andy [3 ]
机构
[1] Boise State, Boise, ID USA
[2] Univ Utah, Salt Lake City, UT USA
[3] Parexel, Durham, NC USA
关键词
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
122
引用
收藏
页码:45 / 46
页数:2
相关论文
共 50 条
  • [31] Interpretable Stroke Risk Prediction Using Machine Learning Algorithms
    Zafeiropoulos, Nikolaos
    Mavrogiorgou, Argyro
    Kleftakis, Spyridon
    Mavrogiorgos, Konstantinos
    Kiourtis, Athanasios
    Kyriazis, Dimosthenis
    INTELLIGENT SUSTAINABLE SYSTEMS, WORLDS4 2022, VOL 2, 2023, 579 : 647 - 656
  • [32] Predictions of heat of combustion and formation by interpretable machine learning algorithms
    Maraschin, Mikael
    Lanzanova, Thompson Diordinis Metzka
    Salau, Nina Paula Goncalves
    FUEL, 2025, 390
  • [33] From Explainable AI to Explainable Simulation: Using Machine Learning and XAI to understand System Robustness
    Feldkamp, Niclas
    Strassburger, Steffen
    PROCEEDINGS OF THE 2023 ACM SIGSIM INTERNATIONAL CONFERENCE ON PRINCIPLES OF ADVANCED DISCRETE SIMULATION, ACMSIGSIM-PADS 2023, 2023, : 96 - 106
  • [34] Energy forecasting with robust, flexible, and explainable machine learning algorithms
    Zhu, Zhaoyang
    Chen, Weiqi
    Xia, Rui
    Zhou, Tian
    Niu, Peisong
    Peng, Bingqing
    Wang, Wenwei
    Liu, Hengbo
    Ma, Ziqing
    Gu, Xinyue
    Wang, Jin
    Chen, Qiming
    Yang, Linxiao
    Wen, Qingsong
    Sun, Liang
    AI MAGAZINE, 2023, 44 (04) : 377 - 393
  • [35] Explainable Machine Learning Algorithms For Predicting Glass Transition Temperatures
    Alcobaca, Edesio
    Mastelini, Saulo Martiello
    Botari, Tiago
    Pimentel, Bruno Almeida
    Cassar, Daniel Roberto
    de Leon Ferreira de Carvalho, Andre Carlos Ponce
    Zanotto, Edgar Dutra
    ACTA MATERIALIA, 2020, 188 : 92 - 100
  • [36] Explainable AI: A Hybrid Approach to Generate Human-Interpretable Explanation for Deep Learning Prediction
    De, Tanusree
    Giri, Prasenjit
    Mevawala, Ahmeduvesh
    Nemani, Ramyasri
    Deo, Arati
    COMPLEX ADAPTIVE SYSTEMS, 2020, 168 : 40 - 48
  • [37] Developing an Explainable Machine Learning-Based Personalised Dementia Risk Prediction Model: A Transfer Learning Approach With Ensemble Learning Algorithms
    Danso, Samuel O.
    Zeng, Zhanhang
    Muniz-Terrera, Graciela
    Ritchie, Craig W.
    FRONTIERS IN BIG DATA, 2021, 4
  • [38] Explainable AI: Graph machine learning for response prediction and biomarker discovery
    Cohen-Setton, Jake
    Bulusu, Krishna
    Dry, Jonathan
    Sidders, Ben
    CANCER RESEARCH, 2024, 84 (06)
  • [39] Developing Interpretable Machine Learning for Forward Kinematics of Robotic Arms
    Kanneganti, Sai Teja
    Pei, Jin-Song
    Hougen, Dean Frederick
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [40] Current Advances, Trends and Challenges of Machine Learning and Knowledge Extraction: From Machine Learning to Explainable AI
    Holzinger, Andreas
    Kieseberg, Peter
    Weippl, Edgar
    Tjoa, A. Min
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2018, 2018, 11015 : 1 - 8