Quantifying Prediction Uncertainty in Regression Using Random Fuzzy Sets: The ENNreg Model

被引:17
|
作者
Denoeux, Thierry [1 ,2 ]
机构
[1] Univ technol Compiegne, Heudiasyc Lab, CNRS, F-60203 Compiegne, France
[2] Inst Univ France, F-75005 Paris, France
关键词
Belief functions; Dempster-Shafer theory; evidence theory; machine learning; neural networks; BELIEF FUNCTIONS;
D O I
10.1109/TFUZZ.2023.3268200
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we introduce a neural network model for regression in which prediction uncertainty is quantified by Gaussian random fuzzy numbers (GRFNs), a newly introduced family of random fuzzy subsets of the real line that generalizes both Gaussian random variables and Gaussian possibility distributions. The output GRFN is constructed by combining GRFNs induced by prototypes using a combination operator that generalizes Dempster's rule of evidence theory. The three output units indicate the most plausible value of the response variable, variability around this value, and epistemic uncertainty. The network is trained by minimizing a loss function that generalizes the negative log-likelihood. Comparative experiments show that this method is competitive, both in terms of prediction accuracy and calibration error, with state-of-the-art techniques such as random forests or deep learning with Monte Carlo dropout. In addition, the model outputs a predictive belief function that can be shown to be calibrated, in the sense that it allows us to compute conservative prediction intervals with specified belief degree.
引用
收藏
页码:3690 / 3699
页数:10
相关论文
共 50 条
  • [21] Modeling uncertainty in reservoir loss functions using fuzzy sets
    Teegavarapu, RSV
    Simonovic, SP
    WATER RESOURCES RESEARCH, 1999, 35 (09) : 2815 - 2823
  • [22] REPRESENTATION OF UNCERTAINTY IN COMPUTER VISION USING FUZZY-SETS
    HUNTSBERGER, TL
    RANGARAJAN, C
    JAYARAMAMURTHY, SN
    IEEE TRANSACTIONS ON COMPUTERS, 1986, 35 (02) : 145 - 156
  • [23] How to Make Decisions with Uncertainty Using Hesitant Fuzzy Sets?
    Kizielewicz, Bartlomiej
    Shekhovtsov, Andrii
    Salabun, Wojciech
    INTELLIGENT AND FUZZY SYSTEMS: DIGITAL ACCELERATION AND THE NEW NORMAL, INFUS 2022, VOL 2, 2022, 505 : 763 - 771
  • [24] Estimation of a Fuzzy Regression Model Using Fuzzy Distances
    Roldan Lopez de Hierro, Antonio Francisco
    Martinez-Moreno, Juan
    Aguilar-Pena, Concepcion
    Roldan Lopez de Hierro, Concepcion
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2016, 24 (02) : 344 - 359
  • [25] Weather prediction using fuzzy sets and inference methodology
    Diab, HB
    Saade, JJ
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 1999, 7 (03) : 283 - 305
  • [26] Estimation of a simple linear regression model for fuzzy random variables
    Gonzalez-Rodriguez, Gil
    Blanco, Angela
    Colubi, Ana
    Asuncion Lubiano, M.
    FUZZY SETS AND SYSTEMS, 2009, 160 (03) : 357 - 370
  • [27] A robust multiple regression model based on fuzzy random variables
    Hesamian, Gholamreza
    Akbari, Mohammad Ghasem
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 388
  • [28] Modelling uncertainty in natural resource analysis using fuzzy sets and Monte Carlo simulation: Slope stability prediction
    Davis, TJ
    Keller, CP
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 1997, 11 (05) : 409 - 434
  • [29] Prediction of retinopathy in diabetic patients using type-2 fuzzy regression model
    Bajestani, Narges Shafaei
    Kamyad, Ali Vahidian
    Esfahani, Ensieh Nasli
    Zare, Assef
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 264 (03) : 859 - 869
  • [30] Risk Prediction Model using Fuzzy Regression Method for predicting unplanned hospital admissions
    Rathi, Manisha
    Chaussalet, Thierry
    2013 7TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON 2013), 2013, : 595 - 598