Deep purified feature mining model for joint named entity recognition and relation extraction

被引:10
|
作者
Wang, Youwei [1 ]
Wang, Ying [1 ]
Sun, Zhongchuan [1 ]
Li, Yinghao [2 ]
Hu, Shizhe [1 ]
Ye, Yangdong [1 ]
机构
[1] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Sch Cyber Sci & Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Named entity recognition Relation extraction Purified features Information bottleneck; NETWORK;
D O I
10.1016/j.ipm.2023.103511
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Table filling based joint named entity recognition and relation extraction task aims to share representation of subtasks in a table to extract structured knowledge. However, most of existing studies need additional labels and dedicated deep neural networks to learn shared representation, imposing heavy burdens to decoders. More seriously, almost all these models suffer from feature confusion problem, failing to capture purified task-specific features from shared representation to perform subtasks. To address these challenging problems, in this paper we propose a novel and effective Deep puRified fEAture Mining (DREAM) model for joint named entity recognition and relation extraction task, which can automatically capture purified task-specific features to improve the classification performance of subtasks. Specifically, unlike introducing additional labels or dedicated network architectures, we design a new lightweight shared representation learning (LSRL) module by the plainest labels of joint task and thus encodes context by the hybrid convolutional neural networks. Afterwards, a task -aware information bottleneck (TIB) module is proposed to explore the relation between the mutual information of the joint distribution of each subtask and its task-specific features. With the above two modules well obtain shared representation and purified task-specific features, the satisfactory classification results of both subtasks can be guaranteed. Experiment results show that the proposed model is highly effective, obtaining the promising results on three different benchmarks: CoNNL04 (general text), ADE (biomedical text) and SciERC (scientific text). For example, DREAM respectively achieves F1-scores of 78.18%, 80.28% and 44.60% in performing the relation extraction subtask on the CoNNL04, ADE and SciERC datasets. The promising performance indicates that the proposed model can be applied to many practical applications such as biomedical information extraction. The source code is publicly available at https://github.com/SWT-AITeam/DREAM.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Deep Exhaustive Model for Nested Named Entity Recognition
    Sohrab, Mohammad Golam
    Miwa, Makoto
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 2843 - 2849
  • [12] Pattern Mining for Named Entity Recognition
    Nouvel, Damien
    Antoine, Jean-Yves
    Friburger, Nathalie
    HUMAN LANGUAGE TECHNOLOGY CHALLENGES FOR COMPUTER SCIENCE AND LINGUISTICS, 2014, 8387 : 226 - 237
  • [13] A Feature-Rich Vietnamese Named Entity Recognition Model
    Pham Quang Nhat Minh
    COMPUTACION Y SISTEMAS, 2022, 26 (03): : 1323 - 1331
  • [14] Joint model of entity recognition and relation extraction based on artificial neural network
    Zhu Zhang
    Shu Zhan
    Haiyan Zhang
    Xinke Li
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 3503 - 3511
  • [15] Joint Model of Entity Recognition and Relation Extraction with Self-attention Mechanism
    Liu, Maofu
    Zhang, Yukun
    Li, Wenjie
    Ji, Donghong
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2020, 19 (04)
  • [16] Joint model of entity recognition and relation extraction based on artificial neural network
    Zhang, Zhu
    Zhan, Shu
    Zhang, Haiyan
    Li, Xinke
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 13 (7) : 3503 - 3511
  • [17] A Military Named Entity Relation Extraction Approach Based on Deep Learning
    Wang, Xuefeng
    Yang, Ruopeng
    Feng, Yulong
    Li, Dongsheng
    Hou, Jianfeng
    2018 INTERNATIONAL CONFERENCE ON ALGORITHMS, COMPUTING AND ARTIFICIAL INTELLIGENCE (ACAI 2018), 2018,
  • [18] Joint Learning of Named Entity Recognition and Entity Linking
    Martins, Pedro Henrique
    Marinho, Zita
    Martins, Andre F. T.
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019:): STUDENT RESEARCH WORKSHOP, 2019, : 190 - 196
  • [19] Fast Model for Joint Extraction of Entity and Relation
    Yang, Dong
    Tian, Shengwei
    Yu, Long
    Zhou, Tiejun
    Wang, Bo
    Computer Engineering and Applications, 2023, 59 (13) : 164 - 170