IESRGAN: Enhanced U-Net Structured Generative Adversarial Network for Remote Sensing Image Super-Resolution Reconstruction

被引:7
|
作者
Yue, Xiaohan [1 ]
Liu, Danfeng [1 ]
Wang, Liguo [1 ]
Benediktsson, Jon Atli [2 ]
Meng, Linghong [1 ]
Deng, Lei [1 ]
机构
[1] Dalian Minzu Univ, Coll Informat & Commun Engn, Dalian 116600, Peoples R China
[2] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
关键词
super-resolution reconstruction; remote sensing images; generative adversarial networks;
D O I
10.3390/rs15143490
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the continuous development of modern remote sensing satellite technology, high-resolution (HR) remote sensing image data have gradually become widely used. However, due to the vastness of areas that need to be monitored and the difficulty in obtaining HR images, most monitoring projects still rely on low-resolution (LR) data for the regions being monitored. The emergence of remote sensing image super-resolution (SR) reconstruction technology effectively compensates for the lack of original HR images. This paper proposes an Improved Enhanced Super-Resolution Generative Adversarial Network (IESRGAN) based on an enhanced U-Net structure for a 4x scale detail reconstruction of LR images using NaSC-TG2 remote sensing images. In this method, in-depth research has been performed and consequent improvements have been made to the generator and discriminator within the GAN network. Specifically, before introducing Residual-in-Residual Dense Blocks (RRDB), in the proposed method, input images are subjected to reflective padding to enhance edge information. Meanwhile, a U-Net structure is adopted for the discriminator, incorporating spectral normalization to focus on semantic and structural changes between real and fake images, thereby improving generated image quality and GAN performance. To evaluate the effectiveness and generalization ability of our proposed model, experiments were conducted on multiple real-world remote sensing image datasets. Experimental results demonstrate that IESRGAN exhibits strong generalization capabilities while delivering outstanding performance in terms of PSNR, SSIM, and LPIPS image evaluation metrics.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Image super-resolution based on conditional generative adversarial network
    Gao, Hongxia
    Chen, Zhanhong
    Huang, Binyang
    Chen, Jiahe
    Li, Zhifu
    IET IMAGE PROCESSING, 2020, 14 (13) : 3006 - 3013
  • [42] Mars image super-resolution based on generative adversarial network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    Zhang, Yongqiang (yongqiang.zhang.hit@gmail.com); Ding, Mingli (mingli.ding.hit@gmail.com), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 108889 - 108898
  • [43] Image Super-resolution Reconstructing based on Generative Adversarial Network
    Nan Jing
    Bo Lei
    AI IN OPTICS AND PHOTONICS (AOPC 2019), 2019, 11342
  • [44] Improved generative adversarial network for retinal image super-resolution
    Qiu, Defu
    Cheng, Yuhu
    Wang, Xuesong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 225
  • [45] Mars Image Super-Resolution Based on Generative Adversarial Network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    IEEE ACCESS, 2021, 9 : 108889 - 108898
  • [46] Spatial Transformer Generative Adversarial Network for Image Super-Resolution
    Rempakos, Pantelis
    Vrigkas, Michalis
    Plissiti, Marina E.
    Nikou, Christophoros
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT I, 2023, 14233 : 399 - 411
  • [47] A lightweight generative adversarial network for single image super-resolution
    Lu, Xinbiao
    Xie, Xupeng
    Ye, Chunlin
    Xing, Hao
    Liu, Zecheng
    Cai, Changchun
    VISUAL COMPUTER, 2024, 40 (01): : 41 - 52
  • [48] Image super-resolution using conditional generative adversarial network
    Qiao, Jiaojiao
    Song, Huihui
    Zhang, Kaihua
    Zhang, Xiaolu
    Liu, Qingshan
    IET IMAGE PROCESSING, 2019, 13 (14) : 2673 - 2679
  • [49] MULTIRESOLUTION MIXTURE GENERATIVE ADVERSARIAL NETWORK FOR IMAGE SUPER-RESOLUTION
    Wang, Yudiao
    Lan, Xuguang
    Zhang, Yinshu
    Miao, Ruixue
    Tian, Zhiqiang
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [50] Enhanced Discriminative Generative Adversarial Network for Face Super-Resolution
    Yang, Xi
    Lu, Tao
    Wang, Jiaming
    Zhang, Yanduo
    Wu, Yuntao
    Wang, Zhongyuan
    Xiong, Zixiang
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2018, PT II, 2018, 11165 : 441 - 452