Domain-invariant information aggregation for domain generalization semantic segmentation

被引:18
|
作者
Liao, Muxin [1 ,4 ]
Tian, Shishun [1 ,4 ]
Zhang, Yuhang [1 ,4 ]
Hua, Guoguang [1 ,4 ]
Zou, Wenbin [1 ,2 ,3 ,4 ,5 ]
Li, Xia [1 ,4 ]
机构
[1] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Inst Artificial Intelligence & Adv Commun, Shenzhen 518060, Peoples R China
[4] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[5] Shenzhen Univ, Inst Artificial Intelligence & Adv Commun, Coll Elect & Informat Engn, Guangdong Key Lab Intelligent Informat Proc,Shenzh, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Domain generalization; Edge; Semantic layout; Semantic segmentation; LEARNING NETWORK; IMAGE;
D O I
10.1016/j.neucom.2023.126273
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization semantic segmentation methods aim to generalize well on out-of-distribution scenes, which is crucial for real-world applications. Recent works focus on learning domain-invariant content information by using normalization, whitening, and domain randomization to remove style information. Although these methods improve the performance on out-of-distribution scenes to some extent, they ignore the learning of edge and semantic layout information. The edge information describes the shape and boundary of an object and the semantic layout information contains the common sense priors (e.g., the spatial position of objects). For one thing, we observe that the shape of the same object with different styles is domain-invariant in the edge map. For another, we observe that the common sense priors in the semantic layout information of different scenes are domain-invariant. Motivated by these observations, a novel approach is proposed for domain generalization semantic segmentation by using the edge and semantic layout information. Specifically, the proposed approach contains the edge reconstruction module (ERM), the semantic layout reconstruction module (SLRM), and the triple informa-tion aggregation module (TIAM). The ERM and SLRM aim to explicitly learn the edge and semantic layout information. The TIAM aggregates the edge and semantic layout information to refine the content infor-mation. Extensive experiments demonstrate that our approach achieves superior performance over cur-rent approaches on domain generalization segmentation tasks. The source code will be released at https://github.com/seabearlmx/DIIA. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Invariant Information Bottleneck for Domain Generalization
    Li, Bo
    Shen, Yifei
    Wang, Yezhen
    Zhu, Wenzhen
    Reed, Colorado
    Li, Dongsheng
    Keutzer, Kurt
    Zhao, Han
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7399 - 7407
  • [12] D2IFLN: Disentangled Domain-Invariant Feature Learning Networks for Domain Generalization
    Liu, Zhengfa
    Chen, Guang
    Li, Zhijun
    Qu, Sanqing
    Knoll, Alois
    Jiang, Changjun
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2023, 15 (04) : 2269 - 2281
  • [13] Estimating Generalization under Distribution Shifts via Domain-Invariant Representations
    Chuang, Ching-Yao
    Torralba, Antonio
    Jegelka, Stefanie
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [14] Estimating Generalization under Distribution Shifts via Domain-Invariant Representations
    Chuang, Ching-Yao
    Torralba, Antonio
    Jegelka, Stefanie
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [15] Domain-Invariant Feature Learning for Domain Adaptation
    Tu, Ching-Ting
    Lin, Hsiau-Wen
    Lin, Hwei Jen
    Tokuyama, Yoshimasa
    Chu, Chia-Hung
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (03)
  • [16] Answering Spatial Commonsense Questions by Learning Domain-Invariant Generalization Knowledge
    Lin, Miaopei
    Yu, Jianxing
    Wang, Shiqi
    Lai, Hanjiang
    Liu, Wei
    Yin, Jian
    WEB AND BIG DATA, PT II, APWEB-WAIM 2023, 2024, 14332 : 270 - 285
  • [17] Single Domain Generalization for LiDAR Semantic Segmentation
    Kim, Hyeonseong
    Kang, Yoonsu
    Oh, Changgyoon
    Yoon, Kuk-Jin
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17587 - 17598
  • [18] Domain-invariant feature learning with label information integration for cross-domain classification
    Jiang L.
    Wu J.
    Zhao S.
    Li J.
    Neural Computing and Applications, 2024, 36 (21) : 13107 - 13126
  • [19] March on Data Imperfections: Domain Division and Domain Generalization for Semantic Segmentation
    Xu, Hai
    Xie, Hongtao
    Zha, Zheng-Jun
    Liu, Sun-ao
    Zhang, Yongdong
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 3044 - 3053
  • [20] DIFLF: A domain-invariant features learning framework for single-source domain generalization in mammogram classification
    Xie, Wanfang
    Liu, Zhenyu
    Zhao, Litao
    Wang, Meiyun
    Tian, Jie
    Liu, Jiangang
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 261