Dynamic behaviour of YAG transparent ceramic under ramp wave and shock compression loading up to 20 GPa

被引:0
|
作者
Bao, K. [1 ,2 ]
Zhang, X. [1 ]
Wang, G. [3 ]
Deng, J. [4 ]
Chong, T. [3 ]
Han, D. [4 ]
Bingqiang, L. [3 ]
Tan, M. [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Syst Design Inst Mech Elect Engn, Beijing 100854, Peoples R China
[3] CAEP, Inst Fluid Phys, Mianyang 621900, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
YAG transparent ceramic; Ramp wave compression; Shock compression; Elastic limit decay; Equation of state; ELASTIC PRECURSOR DECAY; MECHANICAL-PROPERTIES; REFRACTIVE-INDEX; FUSED-SILICA; STRENGTH; SAPPHIRE; ALUMINA;
D O I
10.1007/s00193-023-01152-3
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
YAG transparent ceramic has great potential in the applications to transparent armour protection modules. To study the dynamic behaviour and obtain the parameters for the equation of state of YAG under the load of longitudinal stress ranging from 0 to 20 GPa, ramp wave and shock compression experiments were conducted based on the electromagnetic loading test platform. The Hugoniot data, isentropic data, dynamic strength, and elastic limit of YAG were obtained. The results showed that the relationship between the longitudinal wave speed and the particle velocity of YAG was linear when the longitudinal stress was lower than the elastic limit. The quasi-isentropic compression and shock Hugoniot compression curves were coincident when the stress in YAG was below 10 GPa; however, a separation of the two curves occurred when the stress in YAG ranged from 10 GPa to the elastic limit. Moreover, the effect of strain rate on the fracture stress of YAG under a moderate strain rate of 105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\textrm{5}}$$\end{document}-106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\textrm{6}}$$\end{document}s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {s}<^>{\mathrm {-1}}$$\end{document} was more evident than in other strain rate ranges. The amplitude of the precursor wave decayed with increasing sample thickness.
引用
收藏
页码:585 / 596
页数:12
相关论文
共 50 条
  • [11] Dynamic response of Ti3SiC2 under shock compression up to 112 GPa
    Xu, Liang
    Li, Xuhai
    Cui, Yihang
    Li, Zhiguo
    Chen, Qingyun
    Meng, Chuanmin
    Zhang, Haibing
    Hu, Jianbo
    Wu, Qiang
    [J]. CERAMICS INTERNATIONAL, 2021, 47 (15) : 21008 - 21012
  • [12] Study of ceramic tube fragmentation under shock wave loading
    Bannikova, Irina
    Uvarov, Sergey
    Davydova, Marina
    Naimark, Oleg
    [J]. 20TH EUROPEAN CONFERENCE ON FRACTURE, 2014, 3 : 592 - 597
  • [13] Dynamic material characterization under ramp wave compression with GEPI device
    Hereil, P. -L
    Avrillaud, G.
    [J]. JOURNAL DE PHYSIQUE IV, 2006, 134 : 535 - 540
  • [14] Yield strength of [100] LiF under shock compression up to 60 GPa
    Tan, Ye
    Li, Xuemei
    Yu, Yuying
    Nan, Xiaolong
    Gan, Yuanchao
    Ye, Xiangping
    Hu, Jianbo
    Wang, Qiannan
    [J]. Baozha Yu Chongji/Explosion and Shock Waves, 2022, 42 (04):
  • [15] Phase transition and strength of vanadium under shock compression up to 88 GPa
    Yu, Yuying
    Tan, Ye
    Dai, Chengda
    Li, Xuemei
    Li, Yinghua
    Wu, Qiang
    Tan, Hua
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (20)
  • [16] Electrical behavior of PSZT ferroelectric ceramic under shock wave compression
    Jiang, Dongdong
    Du, Jinmei
    Gu, Yan
    Feng, Yujun
    [J]. HIGH-PERFORMANCE CERAMICS V, PTS 1 AND 2, 2008, 368-372 : 21 - +
  • [17] Evidence of ductile response of alumina ceramic under shock wave compression
    Zaretsky, EB
    Kanel, GI
    [J]. APPLIED PHYSICS LETTERS, 2002, 81 (07) : 1192 - 1194
  • [18] Structural study of hcp and liquid iron under shock compression up to 275 GPa
    Singh, Saransh
    Briggs, Richard
    Gorman, Martin G.
    Benedict, Lorin X.
    Wu, Christine J.
    Hamel, Sebastien
    Coleman, Amy L.
    Coppari, Federica
    Fernandez-Panella, Amalia
    McGuire, Christopher
    Sims, Melissa
    Wicks, June K.
    Eggert, Jon H.
    Fratanduono, Dayne E.
    Smith, Raymond F.
    [J]. PHYSICAL REVIEW B, 2023, 108 (18)
  • [19] Modeling of the dynamic inelasticity of tantalum single crystal under ramp wave loading
    Ding, J. L.
    Asay, J. R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
  • [20] Experimental Investigation of the Dynamic Fragmentation Process in a Transparent Ceramic Under Impact Loading
    Forquin, P.
    [J]. DYNAMIC BEHAVIOR OF MATERIALS, VOL 1, 2016, : 5 - 11