A double exponential gamma-frailty model for clustered survival data

被引:0
|
作者
Xie, Mengqi [1 ]
Zhou, Jie [1 ]
Liu, Lei [2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Washington Univ, Div Biostat, St Louis, MO USA
基金
中国国家自然科学基金;
关键词
clustered data; frailty; survival analysis; Bernstein polynomial; sieve estimator; LIKELIHOOD-ESTIMATION; REGRESSION; HETEROGENEITY; READMISSION;
D O I
10.1080/10485252.2024.2304115
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a double exponential gamma-frailty model for clustered survival data. This model addresses the limitation of shared gamma-frailty models, where the marginal effects of covariates diminish over time. To estimate parameters, we utilise a sieve maximum likelihood approach and employ Bernstein polynomials for approximating nondecreasing cumulative baseline functions. The estimators' asymptotic properties are also provided. The proposed method is demonstrated through numerical simulations and survival data from a diabetic retinopathy study and a colorectal cancer study.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Kernel smoothed profile likelihood estimation in the accelerated failure time frailty model for clustered survival data
    Liu, Bo
    Lu, Wenbin
    Zhang, Jiajia
    BIOMETRIKA, 2013, 100 (03) : 741 - 755
  • [32] Correlated gamma frailty models for bivariate survival data
    Hanagal, David D.
    Pandey, Arvind
    Ganguly, Ayon
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (05) : 3627 - 3644
  • [33] Statistical process control based on gamma-frailty models for heterogeneous reliability observations
    Asadzadeh, Shervin
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (02) : 337 - 351
  • [34] Semiparametric Binary Model for Clustered Survival Data
    Arlin, Rifina
    Ibrahim, Noor Akma
    Arasan, Jayanthi
    Abu Bakar, Rizam
    22ND NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM22), 2015, 1682
  • [35] Gamma shared frailty model based on reversed hazard rate for bivariate survival data
    Hanagal, David D.
    Pandey, Arvind
    STATISTICS & PROBABILITY LETTERS, 2014, 88 : 190 - 196
  • [36] Profile likelihood approaches for semiparametric copula and frailty models for clustered survival data
    Ha, Il Do
    Kim, Jong-Min
    Emura, Takeshi
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (14) : 2553 - 2571
  • [37] Semiparametric additive frailty hazard model for clustered failure time data
    Liu, Peng
    Song, Shanshan
    Zhou, Yong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (02): : 549 - 571
  • [38] The Shared Weighted Lindley Frailty Model for Clustered Failure Time Data
    Gallardo, Diego I.
    Bourguignon, Marcelo
    Santibanez, John L.
    BIOMETRICAL JOURNAL, 2025, 67 (02)
  • [39] A Positive Stable Frailty Model for Clustered Failure Time Data with Covariate-Dependent Frailty
    Liu, Dandan
    Kalbfleisch, John D.
    Schaubel, Douglas E.
    BIOMETRICS, 2011, 67 (01) : 8 - 17
  • [40] Correlated gamma frailty models for bivariate survival time data
    Martins, Adelino
    Aerts, Marc
    Hens, Niel
    Wienke, Andreas
    Abrams, Steven
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (10-11) : 3437 - 3450