Genome-wide analysis and identification of TaRING-H2 gene family and TaSDIR1 positively regulates salt stress tolerance in wheat

被引:11
|
作者
Chen, Liuping [1 ,2 ]
Meng, Ying [1 ,2 ]
Yang, Weibing [1 ,2 ]
Lv, Qian [1 ,2 ]
Zhou, Ling [1 ,2 ]
Liu, Shuqing [1 ,2 ]
Tang, Chenghan [1 ,2 ]
Xie, Yanzhou [1 ,2 ]
Li, Xuejun [1 ,2 ,3 ]
机构
[1] Northwest A&F Univ, State Key Lab Crop Stress Biol Arid Areas, Yangling 712100, Shaanxi, Peoples R China
[2] Northwest A&F Univ, Coll Agron, Yangling 712100, Shaanxi, Peoples R China
[3] Northwest A&F Univ, 3 Taicheng Rd, Yangling 712100, Shaanxi, Peoples R China
关键词
TaRING-H2 gene family; Salt stress; TaSDIR1; Wheat; ENHANCES DROUGHT TOLERANCE; UBIQUITIN E3 LIGASE; TRANSCRIPTION FACTOR; FUNCTIONAL-ANALYSIS; SDIR1; OVEREXPRESSION; EXPRESSION; RESISTANCE; BIOSYNTHESIS; SALINITY;
D O I
10.1016/j.ijbiomac.2023.125162
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Salt stress is an abiotic stress factor that limits high yields, and thus identifying salt tolerance genes is very important for improving the tolerance of salt in wheat. In this study we identified 274 TaRING-H2 family members and analyzed their gene positions, gene structures, conserved structural domains, promoter cis-acting elements and covariance relationships. And we investigated TaRING-H2-120 (TaSDIR1) in salt stress. Transgenic lines exhibited higher salt tolerance in the germination and seedling stages. Compared with the wild type, overexpression of TaSDIR1 upregulated the expression of genes encoding enzymes related to the control of reactive oxygen species (ROS), thereby reducing the accumulation of ROS, as well as increased the expression of ion transport-related genes to limit the inward flow of Na+ in vivo and maintain a higher K+/Na+ ratio. The expression levels of these genes were opposite in lines where TaSDIR1 was silenced by BSMV-VIGS, and the silenced wheat exhibited higher salt sensitivity. Arabidopsis mutants and heterologous TaSDIR1 overexpressing lines had similar salt stress tolerance phenotypes. We also demonstrated that TaSDIR1 interacted with TaSDIR1P2 in vivo and in vitro. A sequence of 80-100 amino acids in TaSDIR1P2 encoded a coiled coil domain that was important for the activity of E3 ubiquitin ligase, and it was also the core region for the interaction between TaSDIR1 and TaSDIR1P2. Overall, our results suggest that TaSDIR1 positively regulates salt stress tolerance in wheat.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Genome-wide identification of the LRX gene family in Cucurbitaceae and expression analysis under salt and drought stress in cucumber
    Fan, Shanshan
    Yang, Songlin
    Shi, Kexin
    Yang, Lin
    An, Menghang
    Wang, Fang
    Qi, Yu
    Feng, Min
    Wang, Mingqi
    Geng, Peixiang
    Liu, Xingwang
    Ren, Huazhong
    VEGETABLE RESEARCH, 2024, 4
  • [32] Genome-Wide Identification of the SMXL Gene Family in Common Wheat and Expression Analysis of TaSMXLs Under Abiotic Stress
    Wang, Zunjie
    Jiang, Zhengning
    Wan, Heping
    Chen, Xueyan
    Wu, Hongya
    AGRONOMY-BASEL, 2025, 15 (03):
  • [33] Genome-wide identification and expression analysis of the ASMT gene family reveals their role in abiotic stress tolerance in apple
    Wang, Hongtao
    Song, Chunhui
    Fang, Sen
    Wang, Zhengyang
    Song, Shangwei
    Jiao, Jian
    Wang, Miaomiao
    Zheng, Xianbo
    Bai, Tuanhui
    SCIENTIA HORTICULTURAE, 2022, 293
  • [34] Genome-Wide Identification and Expression Analysis of Sucrose Transporter Gene Family in Wheat Lines under Heat Stress
    Hou, Qiling
    Gao, Jiangang
    Qin, Zhilie
    Sun, Hui
    Wang, Hanxia
    Yuan, Shaohua
    Zhang, Fengting
    Yang, Weibing
    AGRONOMY-BASEL, 2024, 14 (07):
  • [35] Genome-wide identification and analysis of the ALTERNATIVE OXIDASE gene family in diploid and hexaploid wheat
    Brew-Appiah, Rhoda A. T.
    York, Zara B.
    Krishnan, Vandhana
    Roalson, Eric H.
    Sanguinet, Karen A.
    PLOS ONE, 2018, 13 (08):
  • [36] Genome-wide identification of BBX gene family and their expression patterns under salt stress in soybean
    Shan, Binghui
    Bao, Guohua
    Shi, Tianran
    Zhai, Lulu
    Bian, Shaomin
    Li, Xuyan
    BMC GENOMICS, 2022, 23 (01)
  • [37] Genome-wide identification of BBX gene family and their expression patterns under salt stress in soybean
    Binghui Shan
    Guohua Bao
    Tianran Shi
    Lulu Zhai
    Shaomin Bian
    Xuyan Li
    BMC Genomics, 23
  • [38] Genome-Wide Identification of ALDH Gene Family under Salt and Drought Stress in Phaseolus vulgaris
    Eren, Abdil Hakan
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2024,
  • [39] Genome-wide analysis and functional validation of the cotton FAH gene family for salt stress
    Gu, Haijing
    Feng, Wenxiang
    Mehari, Teame Gereziher
    Wang, Yifan
    Wang, Ziyin
    Xu, Yifan
    Zhao, Yizhou
    Tang, Junfeng
    Zhang, Ke
    Zhou, Zitong
    Wang, Wei
    Zhou, Ruqin
    Wu, Jianyong
    Wang, Baohua
    BMC GENOMICS, 2025, 26 (01):
  • [40] Genome-wide identification of wheat ABC gene family and expression in response to fungal stress treatment
    Wang, Guanghao
    Gu, Jianhua
    Long, Deyu
    Zhang, Xiangyu
    Zhao, Chenxu
    Zhang, Hong
    Chen, Chunhuan
    Ji, Wanquan
    PLANT BIOTECHNOLOGY REPORTS, 2024, 18 (03) : 401 - 413