Knowledge transfer based hierarchical few-shot learning via tree-structured knowledge graph

被引:3
|
作者
Zhang, Zhong [1 ,2 ]
Wu, Zhiping [1 ,2 ]
Zhao, Hong [1 ,2 ]
Hu, Minjie [1 ,2 ]
机构
[1] Minnan Normal Univ, Sch Comp Sci, Zhangzhou 363000, Fujian, Peoples R China
[2] Fujian Prov Univ, Key Lab Data Sci & Intelligence Applicat, Zhangzhou 363000, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Few-shot learning; Hierarchical classification; Knowledge transfer; Tree-structured knowledge graph;
D O I
10.1007/s13042-022-01640-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot learning poses a great challenge for obtaining a classifier that recognizes new classes from a few labeled examples. Existing solutions perform well by leveraging meta-learning models driven by data information. However, these models only utilize the flat data information and ignore the existing hierarchical knowledge structure among classes. In this paper, we propose a knowledge transfer based hierarchical few-shot learning model, which takes advantage of a tree-structured knowledge graph to facilitate the classification results. First, we consider a tree-structured class hierarchy according to the semantic information among classes as a knowledge graph to alleviate the low-data problem. Second, we divide the tree structure into class structure and data, and build a multi-layer classifier to obtain classification results in the two parts. Finally, we consider the tradeoff between structure loss and data loss for hierarchical few-shot learning, which takes class structure information to assist learning. Experimental results on benchmark datasets show that our model outperforms several state-of-the-art models.
引用
收藏
页码:281 / 294
页数:14
相关论文
共 50 条
  • [1] Knowledge transfer based hierarchical few-shot learning via tree-structured knowledge graph
    Zhong Zhang
    Zhiping Wu
    Hong Zhao
    Minjie Hu
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 281 - 294
  • [2] Graph Few-Shot Learning via Knowledge Transfer
    Yao, Huaxiu
    Zhang, Chuxu
    Wei, Ying
    Jiang, Meng
    Wang, Suhang
    Huang, Junzhou
    Chawla, Nitesh, V
    Li, Zhenhui
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6656 - 6663
  • [3] Few-shot Heterogeneous Graph Learning via Cross-domain Knowledge Transfer
    Zhang, Qiannan
    Wu, Xiaodong
    Yang, Qiang
    Zhang, Chuxu
    Zhang, Xiangliang
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2450 - 2460
  • [4] Knowledge Graph Transfer Network for Few-Shot Recognition
    Chen, Riquan
    Chen, Tianshui
    Hui, Xiaolu
    Wu, Hefeng
    Li, Guanbin
    Lin, Liang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 10575 - 10582
  • [5] Hierarchical Knowledge Propagation and Distillation for Few-Shot Learning
    Zhou, Chunpeng
    Wang, Haishuai
    Zhou, Sheng
    Yu, Zhi
    Bandara, Danushka
    Bu, Jiajun
    NEURAL NETWORKS, 2023, 167 : 615 - 625
  • [6] Hierarchical Tree-structured Knowledge Graph For Academic Insight Survey
    Li, Jinghong
    Phan Huy
    Gu, Wen
    Ota, Koichi
    Hasegawa, Shinobu
    2024 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS, INISTA, 2024,
  • [7] Few-Shot Knowledge Graph Completion Model Based on Relation Learning
    Li, Weijun
    Gu, Jianlai
    Li, Ang
    Gao, Yuxiao
    Zhang, Xinyong
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [8] Few-Shot Knowledge Graph Completion
    Zhang, Chuxu
    Yao, Huaxiu
    Huang, Chao
    Jiang, Meng
    Li, Zhenhui
    Chawla, Nitesh, V
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 3041 - 3048
  • [9] Few-Shot Object Detection via Knowledge Transfer
    Kim, Geonuk
    Jung, Hong-Gyu
    Lee, Seong-Whan
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3564 - 3569
  • [10] Symmetric Hallucination With Knowledge Transfer for Few-Shot Learning
    Wang, Shuo
    Zhang, Xinyu
    Wang, Meng
    He, Xiangnan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1797 - 1807