Few-shot Heterogeneous Graph Learning via Cross-domain Knowledge Transfer

被引:5
|
作者
Zhang, Qiannan [1 ]
Wu, Xiaodong [1 ]
Yang, Qiang [1 ]
Zhang, Chuxu [2 ]
Zhang, Xiangliang [1 ,3 ]
机构
[1] King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
[2] Brandeis Univ, Waltham, MA 02254 USA
[3] Univ Notre Dame, Notre Dame, IN 46556 USA
关键词
Heterogeneous Graphs; Few-shot Learning; Knowledge Transfer;
D O I
10.1145/3534678.3539431
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph few-shot learning seeks to alleviate the label scarcity problem resulting from the difficulties and high cost of data annotations in graph learning. However, the overwhelming solutions in graph few-shot learning focus on homogeneous graphs, ignoring the ubiquitous heterogeneous graphs (HGs), which represent real-world complex systems and domain knowledge with multi-typed nodes interconnected by multi-typed edges. To this end, we study the crossdomain few-shot learning problem over HGs and develop a novel model for Cross-domain Heterogeneous Graph Meta-learning (CrossHG-Meta). The general idea is to promote the HG node classification in the data-scarce target domain by transferring metaknowledge from a series of HGs in data-rich source domains. The key challenges are to 1) combat the heterogeneity in HGs to acquire the transferable meta-knowledge; 2) handle the domain shifts between the source HG and target HG; and 3) fast adapt to novel target tasks with few-shot annotated examples. Regarding the graph heterogeneity, CrossHG-Meta firstly builds a graph encoder to aggregate heterogeneous neighborhood information from multiple semantic contexts. Secondly, to tackle domain shifts, a cross-domain meta-learning strategy is proposed to include a domain critic, which is designed to explicitly lead cross-domain adaptation for metatasks in different domains and improve model generalizability. Last, to further alleviate data scarcity, CrossHG-Meta leverages unlabeled information in source domains with auxiliary self-supervised learning task to provide cross-domain contrastive regularization alongside the meta-optimization process to facilitate node embedding. Extensive experimental results on three multi-domain HG datasets demonstrate that the proposed model outperforms various state-of-the-art baselines for multiple few-shot node classification tasks under the cross-domain setting.
引用
收藏
页码:2450 / 2460
页数:11
相关论文
共 50 条
  • [1] Knowledge transduction for cross-domain few-shot learning
    Li, Pengfang
    Liu, Fang
    Jiao, Licheng
    Li, Shuo
    Li, Lingling
    Liu, Xu
    Huang, Xinyan
    [J]. PATTERN RECOGNITION, 2023, 141
  • [2] Cross-Domain Few-Shot Graph Classification
    Hassani, Kaveh
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 6856 - 6864
  • [3] Graph Few-Shot Learning via Knowledge Transfer
    Yao, Huaxiu
    Zhang, Chuxu
    Wei, Ying
    Jiang, Meng
    Wang, Suhang
    Huang, Junzhou
    Chawla, Nitesh, V
    Li, Zhenhui
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6656 - 6663
  • [4] Understanding Cross-Domain Few-Shot Learning Based on Domain Similarity and Few-Shot Difficulty
    Oh, Jaehoon
    Kim, Sungnyun
    Ho, Namgyu
    Kim, Jin-Hwa
    Song, Hwanjun
    Yun, Se-Young
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [5] Cross-domain few-shot learning via adaptive transformer networks
    Paeedeh, Naeem
    Pratama, Mahardhika
    Ma'sum, Muhammad Anwar
    Mayer, Wolfgang
    Cao, Zehong
    Kowlczyk, Ryszard
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 288
  • [6] Cross-domain few-shot learning via adaptive transformer networks
    Paeedeh, Naeem
    Pratama, Mahardhika
    Ma'sum, Muhammad Anwar
    Mayer, Wolfgang
    Cao, Zehong
    Kowlczyk, Ryszard
    [J]. Knowledge-Based Systems, 2024, 288
  • [7] DUAL GRAPH CROSS-DOMAIN FEW-SHOT LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Zhang, Yuxiang
    Li, Wei
    Zhang, Mengmeng
    Tao, Ran
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3573 - 3577
  • [8] Cross-Domain Few-Shot Relation Extraction via Representation Learning and Domain Adaptation
    Yuan, Zhongju
    Wang, Zhenkun
    Li, Genghui
    [J]. 2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [9] SAR Image Classification Using Few-shot Cross-domain Transfer Learning
    Rostami, Mohammad
    Kolouri, Soheil
    Eaton, Eric
    Kim, Kyungnam
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 907 - 915
  • [10] Graph Information Aggregation Cross-Domain Few-Shot Learning for Hyperspectral Image Classification
    Zhang, Yuxiang
    Li, Wei
    Zhang, Mengmeng
    Wang, Shuai
    Tao, Ran
    Du, Qian
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 1912 - 1925