Fast Multiobjective Gradient Methods with Nesterov Acceleration via Inertial Gradient-Like Systems

被引:2
|
作者
Sonntag, Konstantin [1 ]
Peitz, Sebastian [2 ]
机构
[1] Paderborn Univ, Dept Math, D-33098 Paderborn, Germany
[2] Paderborn Univ, Dept Comp Sci, D-33098 Paderborn, Germany
关键词
Multiobjective optimization; Gradient methods; Nesterov acceleration; Inertial dynamics; Lyapunov analysis; DYNAMICAL-SYSTEM; PARETO-OPTIMIZATION; SLOW SOLUTIONS; EXISTENCE; CONVERGENCE;
D O I
10.1007/s10957-024-02389-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We derive efficient algorithms to compute weakly Pareto optimal solutions for smooth, convex and unconstrained multiobjective optimization problems in general Hilbert spaces. To this end, we define a novel inertial gradient-like dynamical system in the multiobjective setting, which trajectories converge weakly to Pareto optimal solutions. Discretization of this system yields an inertial multiobjective algorithm which generates sequences that converge weakly to Pareto optimal solutions. We employ Nesterov acceleration to define an algorithm with an improved convergence rate compared to the plain multiobjective steepest descent method (Algorithm 1). A further improvement in terms of efficiency is achieved by avoiding the solution of a quadratic subproblem to compute a common step direction for all objective functions, which is usually required in first-order methods. Using a different discretization of our inertial gradient-like dynamical system, we obtain an accelerated multiobjective gradient method that does not require the solution of a subproblem in each step (Algorithm 2). While this algorithm does not converge in general, it yields good results on test problems while being faster than standard steepest descent.
引用
收藏
页码:539 / 582
页数:44
相关论文
共 50 条
  • [31] Distributed Nesterov-like Gradient Algorithms
    Jakovetic, Dusan
    Moura, Jose M. F.
    Xavier, Joao
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 5459 - 5464
  • [32] Gradient-like behavior analysis and synthesis of uncertain pendulum-like systems
    Yang, Y
    Huang, L
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 5226 - 5231
  • [33] Training Deep Neural Networks Using Conjugate Gradient-like Methods
    Iiduka, Hideaki
    Kobayashi, Yu
    ELECTRONICS, 2020, 9 (11) : 1 - 25
  • [34] Multiobjective Sequence Design via Gradient Descent Methods
    Baden, John Michael
    O'Donnell, Brian
    Schmieder, Lance
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (03) : 1237 - 1252
  • [35] NONUNIFORMLY HYPERBOLIC SYSTEMS ARISING FROM COUPLING OF CHAOTIC AND GRADIENT-LIKE SYSTEMS
    Tanzi, Matteo
    Young, Lai-Sang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (10) : 6015 - 6041
  • [36] Thermosensitive spontaneous gradient copolymers with block- and gradient-like features
    Yanez-Macias, Roberto
    Kulai, Ihor
    Ulbrich, Jens
    Yildirim, Turgay
    Sungur, Pelin
    Hoeppener, Stephanie
    Guerrero-Santos, Ramiro
    Schubert, Ulrich S.
    Destarac, Mathias
    Guerrero-Sanchez, Carlos
    Harrisson, Simon
    POLYMER CHEMISTRY, 2017, 8 (34) : 5023 - 5032
  • [37] The stability of attractors for non-autonomous perturbations of gradient-like systems
    Langa, Jose A.
    Robinson, James C.
    Suarez, Antonio
    Vidal-Lopez, Alejandro
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (02) : 607 - 625
  • [38] Asymptotic Estimates for Gradient-Like Distributed Parameter Systems with Periodic Nonlinearities
    Perkin, Aleksey
    Proskurnikov, Anton
    Smirnova, Vera
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL (ISIC), 2014, : 1638 - 1643
  • [39] CONJUGATE GRADIENT-LIKE ALGORITHMS FOR SOLVING NONSYMMETRIC LINEAR-SYSTEMS
    SAAD, Y
    SCHULTZ, MH
    MATHEMATICS OF COMPUTATION, 1985, 44 (170) : 417 - 424
  • [40] Convergence Rates of Distributed Nesterov-Like Gradient Methods on Random Networks
    Jakovetic, Dusan
    Freitas Xavier, Joao Manuel
    Moura, Jose M. F.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (04) : 868 - 882