Orbital stability of pseudo-peakons for the fifth-order Camassa-Holm type equation

被引:1
|
作者
Hu, Qinghua [1 ]
Zhu, Mingxuan [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
关键词
Fifth-order Camassa-Holm type; equation; Orbital stability; Pseudo-peakon; SHALLOW-WATER EQUATION; WELL-POSEDNESS; WEAK SOLUTIONS; EXISTENCE; BREAKING;
D O I
10.1016/j.aml.2023.108667
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the fifth-order Camassa-Holm type equation which is integrable and admits the single pseudo-peakons and multi-pseudo-peakons. We discuss the orbital stability of single pseudo-peakons.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Orbital stability of the sum of N peakons for the generalized modified Camassa-Holm equation
    Tongjie Deng
    Aiyong Chen
    Monatshefte für Mathematik, 2023, 202 : 229 - 262
  • [22] Stability of the μ-Camassa-Holm Peakons
    Chen, Robin Ming
    Lenells, Jonatan
    Liu, Yue
    JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (01) : 97 - 112
  • [23] ORBITAL STABILITY OF PEAKONS AND MULTI-PEAKONS FOR A GENERALIZED QUINTIC-SEPTIC CAMASSA-HOLM TYPE EQUATION
    He, Dandan
    Deng, Tongjie
    Zhang, Kelei
    QUARTERLY OF APPLIED MATHEMATICS, 2024,
  • [24] Orbital stability of the sum of N peakons for the generalized modified Camassa-Holm equation
    Deng, Tongjie
    Chen, Aiyong
    MONATSHEFTE FUR MATHEMATIK, 2023, 202 (02): : 229 - 262
  • [25] Stability of periodic peakons for the modified μ-Camassa-Holm equation
    Liu, Yue
    Qu, Changzheng
    Zhang, Ying
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 250 : 66 - 74
  • [26] Stability of peakons for the generalized modified Camassa-Holm equation
    Guo, Zihua
    Liu, Xiaochuan
    Liu, Xingxing
    Qu, Changzheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (12) : 7749 - 7779
  • [27] Stability of peakons and periodic peakons for a nonlinear quartic Camassa-Holm equation
    Chen, Aiyong
    Deng, Tongjie
    Qiao, Zhijun
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (02): : 251 - 288
  • [28] Stability of peakons and periodic peakons for a nonlinear quartic Camassa-Holm equation
    Aiyong Chen
    Tongjie Deng
    Zhijun Qiao
    Monatshefte für Mathematik, 2022, 198 : 251 - 288
  • [29] Multi-Pseudo Peakons in the b-Family Fifth-Order Camassa–Holm Model
    朱鼎浩
    朱晓东
    Chinese Physics Letters, 2023, 40 (12) : 14 - 20
  • [30] Orbital Stability of Peakons for the Modified Camassa—Holm Equation
    Ji Li
    Acta Mathematica Sinica, English Series, 2022, 38 : 148 - 160