ADMISSIBLE PERTURBATIONS OF THE THREE-DIMENSIONAL HINDMARSH - ROSE NEURON MODEL

被引:2
|
作者
Musafirov, Eduard [1 ]
机构
[1] Yanka Kupala State Univ Grodno, Dept Mech & Bldg Struct, Ozheshko St 22, Grodno 230023, BELARUS
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2023年 / 13卷 / 04期
关键词
Reflecting function; admissible perturbation; bifurcation diagram; periodic attractor; strange attractor; REFLECTING FUNCTION; DIFFERENTIAL-SYSTEMS;
D O I
10.11948/20210098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the autonomous Hindmarsh - Rose system the set of admissibly perturbed nonautonomous systems have been obtained. Reflecting functions of the Hindmarsh - Rose system and admissibly perturbed system are coinciding. This allows to investigate the admissibly perturbed systems using outcomes of researches of the well-known Hindmarsh - Rose system and the theory of reflecting function. The results are illustrated by numerical examples.
引用
收藏
页码:1668 / 1678
页数:11
相关论文
共 50 条
  • [41] Homoclinic organization in the Hindmarsh-Rose model: A three parameter study
    Barrio, Roberto
    Ibanez, Santiago
    Perez, Lucia
    CHAOS, 2020, 30 (05)
  • [42] Bifurcations in two-dimensional Hindmarsh-Rose type model
    Tsuji, Shigeki
    Ueta, Tetsushi
    Kawakami, Hiroshi
    Fujii, Hiroshi
    Aihara, Kazuyuki
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (03): : 985 - 998
  • [43] ON PERIODIC FIRING ACTIVITIES OF A HINDMARSH-ROSE NEURON MODEL WITH EXTERNAL PERIODIC STIMULUS
    Xu, Yeyin
    Feng, Peihua
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 7B, 2021,
  • [44] A Hindmarsh-Rose neuron model with electromagnetic radiation control for the mechanical optimization design
    Zhang, Sien
    Yao, Wei
    Xiong, Li
    Wang, Yijie
    Tang, Lihong
    Zhang, Xin
    Yu, Fei
    CHAOS SOLITONS & FRACTALS, 2024, 187
  • [45] Smooth nonlinear fitting scheme for analog multiplierless implementation of Hindmarsh–Rose neuron model
    Jianming Cai
    Han Bao
    Quan Xu
    Zhongyun Hua
    Bocheng Bao
    Nonlinear Dynamics, 2021, 104 : 4379 - 4389
  • [46] Bifurcations and chaos in a two-dimensional discrete Hindmarsh–Rose model
    Bo Li
    Zhimin He
    Nonlinear Dynamics, 2014, 76 : 697 - 715
  • [47] Intermittency of three-dimensional perturbations in a point-vortex model
    van Kan, Adrian
    Alexakis, Alexandros
    Brachet, Marc-Etienne
    PHYSICAL REVIEW E, 2021, 103 (05)
  • [48] Synchronization of boundary coupled Hindmarsh-Rose neuron network
    Phan, Chi
    You, Yuncheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 55
  • [49] A digital implementation of 2D Hindmarsh–Rose neuron
    Moslem Heidarpur
    Arash Ahmadi
    Nabeeh Kandalaft
    Nonlinear Dynamics, 2017, 89 : 2259 - 2272
  • [50] Dynamical Analysis of the Hindmarsh-Rose Neuron With Time Delays
    Lakshmanan, S.
    Lim, C. P.
    Nahavandi, S.
    Prakash, M.
    Balasubramaniam, P.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (08) : 1953 - 1958