ADMISSIBLE PERTURBATIONS OF THE THREE-DIMENSIONAL HINDMARSH - ROSE NEURON MODEL

被引:2
|
作者
Musafirov, Eduard [1 ]
机构
[1] Yanka Kupala State Univ Grodno, Dept Mech & Bldg Struct, Ozheshko St 22, Grodno 230023, BELARUS
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2023年 / 13卷 / 04期
关键词
Reflecting function; admissible perturbation; bifurcation diagram; periodic attractor; strange attractor; REFLECTING FUNCTION; DIFFERENTIAL-SYSTEMS;
D O I
10.11948/20210098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the autonomous Hindmarsh - Rose system the set of admissibly perturbed nonautonomous systems have been obtained. Reflecting functions of the Hindmarsh - Rose system and admissibly perturbed system are coinciding. This allows to investigate the admissibly perturbed systems using outcomes of researches of the well-known Hindmarsh - Rose system and the theory of reflecting function. The results are illustrated by numerical examples.
引用
收藏
页码:1668 / 1678
页数:11
相关论文
共 50 条
  • [1] Three-Dimensional Memristive Hindmarsh-Rose Neuron Model with Hidden Coexisting Asymmetric Behaviors
    Bao, Bocheng
    Hu, Aihuang
    Bao, Han
    Xu, Quan
    Chen, Mo
    Wu, Huagan
    COMPLEXITY, 2018,
  • [2] Stochastic Generation of Bursting Oscillations in the Three-dimensional Hindmarsh Rose Model
    Ryashko, Lev B.
    Slepukhina, Evdokia S.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2016, 9 (01): : 79 - 89
  • [3] Hindmarsh-Rose neuron model with memristors
    Usha, K.
    Subha, P. A.
    BIOSYSTEMS, 2019, 178 : 1 - 9
  • [4] A Digital Synthesis of Hindmarsh-Rose Neuron: A Thalamic Neuron Model of The Brain
    Kazemi, Amirhosein
    Ahmadi, Arash
    Gomar, Shaghayegh
    2014 22ND IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2014, : 238 - 241
  • [5] Complex bifurcation structures in the Hindmarsh-Rose neuron model
    Gonzalez-Miranda, J. M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (09): : 3071 - 3083
  • [6] Order and chaos in the stochastic Hindmarsh–Rose model of the neuron bursting
    Irina Bashkirtseva
    Lev Ryashko
    Evdokia Slepukhina
    Nonlinear Dynamics, 2015, 82 : 919 - 932
  • [7] Finding Periodic Orbits in the Hindmarsh-Rose Neuron Model
    Angeles Martinez, M.
    Barrio, Roberto
    Serrano, Sergio
    PROGRESS AND CHALLENGES IN DYNAMICAL SYSTEMS, 2013, 54 : 301 - 308
  • [8] Global exponentially synchronization of Hindmarsh-Rose neuron model
    Jia, Qiu-Ju
    Chen, Zeng-Qiang
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2011, 41 (SUPPL. 1): : 235 - 239
  • [9] PERTURBATIONS OF HINDMARSH-ROSE NEURON DYNAMICS BY FRACTIONAL OPERATORS: BIFURCATION, FIRING AND CHAOTIC BURSTS
    Goufo, Emile Franc Doungmo
    Khumalo, Melusi
    Djomegni, Patrick M. Tchepmo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 663 - 682
  • [10] Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model
    González-Miranda, JM
    CHAOS, 2003, 13 (03) : 845 - 852